首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strong hydrogen bonding ability of 2-pyridones were exploited to build nanotrains on surfaces. Carborane wheels on axles difunctionalized with 2-pyridone hydrogen bonding units were synthesized and displayed spontaneous formation of linear nanotrains by self-assembly on SiO2 or mica surfaces. Imaging using atomic force microscopy confirmed linear formations with lengths up to 5 μm and heights within the range of the molecular height of the carborance-tipped axles. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

2.
Two simple methods have been demonstrated to obtain large area, single crystalline lamellae of copper-7,7,8,8-tetracyanoquinodimethane (CuTCNQ). The formation of the lamellae was a result of fine tuning of the processes during the synthesis processes of CuTCNQ phase II. This facile synthesis of large area single crystalline lamellae suggests bright prospects for the study and understanding of the electrical switching of CuTCNQ by using single crystals of its phase II, and future applications of the material in memory and switching devices. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
We introduce voltage-contrast scanning electron microscopy (VC-SEM) for visual characterization of the electronic properties of single-walled carbon nanotubes. VC-SEM involves tuning the electronic band structure and imaging the potential profi le along the length of the nanotube. The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices, as confi rmed by in situ electrical transport measurements. We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized. A leakage current model in combination with fi nite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes. This work serves to fill a void in electronic characterization of molecular device architectures. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

4.
Using magnetic nanoparticles to enhance gene transfection, a recently developed technique termed magnetofection, has been shown to be a powerful technology in gene delivery. The most widely used magnetic nanoparticles in this area are those coated with polyethyleneimine, which is a well known nonviral transfection agent. In this article, we report methods to control the aggregate size of polyethyleneimine-coated magnetite particles. These particles were then used to enhance transfection of green fluorescent protein (GFP) into NIH 3T3 cells in vitro. We find that the aggregate size of the particles has a great effect on their performance in magnetofection, with less aggregated magnetic particles being more effective in enhancing the gene transfection. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-10-nm gold nanowires.   相似文献   

6.
A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N2 adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles   总被引:1,自引:0,他引:1  
Semiconductor nanocrystals (dots, rods, wires, etc.) exhibit a wide range of electrical and optical properties that differ from those of the corresponding bulk materials. These properties depend on both nanocrystal size and shape. Compared with nanodots, nanorods have an additional degree of freedom, the length or aspect ratio, and reduced symmetry, which leads to anisotropic properties. In this paper, we report the Au nanoparticlecatalyzed colloidal synthesis of monodisperse CdS nanorods. Based on systematic high resolution transmission electron microscopy studies, we propose a growth mechanism for these nanorods. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

8.
It is a great challenge to spontaneously assemble achiral molecules into twisted nanostructures in the absence of chiral substances. Here we show that two achiral centrosymmetric quinacridone (QA) derivatives, N,N′-di(n-hexyl)-1, 3, 8, 10-tetramethylquinacridone (C6TMQA) and N,N′-di(n-decyl)-1, 3, 8, 10-tetramethylquinac ridone (C10TMQA), can be employed as building blocks to fabricate well-defined twisted nanostructures by controlling the solvent composition and concentration. Bowknot-like bundles with twisted fiber arms were prepared from C6TMQA, whilst uniform twisted fibers were generated from C10TMQA in ethanol/THF solution. Spectroscopic characterization and molecular simulation calculations revealed that the introduction of ethanol into the solution could induce a staggered aggregation of C6TMQA (or C10TMQA) molecules and the formation of twisted nanostructures. Such twisted materials generated from achiral organic functional molecules may be valuable in the design and fabrication of new materials for optoelectronic applications. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
Bimetallic PtAu heteronanostructures have been synthesized from Pt-on-Au nanoparticles, which were made from platinum acetylacetonate and gold nanoparticles. Using the Pt-on-Au nanoparticles as precursors, Ptsurface rich PtAu bimetallic heteronanostructures can be produced through controlled thermal treatments, as confirmed by field emission high-resolution transmission electron microscopy (HR-TEM) and elemental mapping using a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM). Oxidation of formic acid was used as a model reaction to demonstrate the effects of varying composition and surface structure on the catalytic performance of PtAu bimetallic nanostructures. Cyclic voltammetry (CV) showed that these carbon-supported PtAu heteronanostructures were much more active than platinum in catalyzing the oxidation of formic acid, judging by the mass current density. The results showed that postsynthesis modification can be a very useful approach to the control of composition distributions in alloy nanostructures. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
A novel nano- and micro-integrated protein chip (NMIPC) that can detect proteins with ultrahigh sensitivity has been fabricated. A microfluidic network (μFN) was used to construct the protein chips, which allowed facile patterning of proteins and subsequent biomolecular recognition. Aqueous phase-synthesized, water-soluble fluorescent CdTe/CdS core-shell quantum dots (aqQDs), having high quantum yield and high photostability, were used as the signaling probe. Importantly, it was found that aqQDs were compatible with microfluidic format assays, which afforded highly sensitive protein chips for cancer biomarker assays. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
We propose a simple method for the efficient and rapid synthesis of one-dimensional hematite (α-Fe2O3) nanostructures based on electrical resistive heating of iron wire under ambient conditions. Typically, 1–5 μm long α-Fe2O3 nanowires were synthesized on a time scale of seconds at temperatures of around 700 ° ⊂. The morphology, structure, and mechanism of formation of the nanowires were studied by scanning and transmission electron microscopies, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman techniques. A nanowire growth mechanism based on diffusion of iron ions to the surface through grain boundaries and to the growing wire tip through stacking fault defects and due to surface diffusion is proposed. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
Current methods of synthesizing single-walled carbon nanotubes (SWNTs) result in racemic mixtures that have impeded the study of left- and right-handed SWNTs. Here we present a method of isolating different SWNT enantiomers using density gradient ultracentrifugation. Enantiomer separation is enabled by the chiral surfactant sodium cholate, which discriminates between left- and right-handed SWNTs and thus induces subtle differences in their buoyant densities. This sorting strategy can be employed for simultaneous enrichment by handedness and roll-up vector of SWNTs having diameters ranging from 0.7 to 1.5 nm. In addition, circular dichroism of enantiomer refined samples enables identification of high-energy optical transitions in SWNTs. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
We report the synthesis of high magnetic moment CoFe nanoparticles via the diffusion of Co and Fe in core/shell structured Co/Fe nanoparticles. In an organic solution, Co nanoparticles were coated with a layer of Fe to form a Co/Fe core/shell structure. Further raising the solution temperature led to inter-diffusion of Co and Fe and formation of CoFe alloy nanoparticles. These nanoparticles have high saturation magnetization of up to 192 emu/g CoFe and can be further stabilized by thermal annealing at 600 °C. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. These two authors made an equal contribution to the work.  相似文献   

14.
15.
We demonstrate that the near-infrared (NIR) absorptivity of semiconducting single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Photogenerated charge separation is efficiently driven by the ultrahigh interfacial area of the blends and the favorable energy offsets between the two materials. NIR-sensitive photovoltaic and photodetector devices utilizing the stack (indium tin oxide/ca. 10 nm s-SWCNT:PCBM/100 nm C60/10 nm 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Ag) were fabricated with NIR power conversion efficiencies >1.3% and peak, zero bias external quantum efficiency of 18% at λ = 1205 nm.   相似文献   

16.
Two fluorescent quantum clusters of gold, namely Au25 and Au8, have been synthesized from mercaptosuccinic acid-protected gold nanoparticles of 4–5 nm core diameter by etching with excess glutathione. While etching at pH ∼3 yielded Au25, that at pH 7–8 yielded Au8. This is the first report of the synthesis of two quantum clusters starting from a single precursor. This simple method makes it possible to synthesize well-defined clusters in gram quantities. Since these clusters are highly fluorescent and are highly biocompatible due to their low metallic content, they can be used for diagnostic applications. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

17.
Capacitively coupled shortwave radiofrequency fields (13.56 MHz) resistively heat low concentrations (∼1 ppm) of gold nanoparticles with a thermal power dissipation of ∼380 kW/g of gold. Smaller diameter gold nanoparticles (< 50 nm) heat at nearly twice the rate of larger diameter gold nanoparticles (≥50 nm), which is attributed to the higher resistivity of smaller gold nanostructures. A Joule heating model has been developed to explain this phenomenon and provides critical insights into the rational design and engineering of nanoscale materials for noninvasive thermal therapy of cancer. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. These two authors made an equal contribution to the work.  相似文献   

18.
Single-walled carbon nanotubes (SWNTs) are expected to be an ideal candidate for making highly efficient strain sensing devices owing to their unique mechanical, electronic, and electromechanical properties. Here we present the use of fluorphlogopite mica (F-mica) as a flexible, high-temperature-bearing and mechanically robust substrate for the direct growth of horizontally aligned ultra-long SWNT arrays by chemical vapor deposition (CVD), which in turn enables the straightforward, facile, and cost-effective fabrication of macro-scale SWNT-array-based strain sensors. Strain sensing tests of the SWNT-array devices demonstrated fairly good strain sensitivity with high ON-state current density.   相似文献   

19.
Metallic nanostructures with hollow interiors or tailored porosity represent a special class of attractive materials with intriguing chemicophysical properties. This paper presents the fabrication of a new type of metallic nanoporous nanotube structure based on a facile and effective combination of nanocrystal growth and surface modification. By controlling the individual steps involved in this process, such as nanowire growth, surface modification, thermal diffusion, and dealloying, one-dimensional (1-D) metallic nanostructures can be prepared with tailored structural features and pre-designed functionalities. These tubular and porous nanostructures show distinct optical properties, such as tunable absorption in the near-infrared region, and enhanced capability for electrochemiluminescence signal amplification, which make them particularly desirable as novel 1-D nanocarriers for biomedical, drug delivery and sensing applications. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
A novel process is demonstrated whereby dense arrays of single-walled carbon nanotubes (SWNT) are grown directly at the interface of a carbon material or carbon fiber. This growth process combines the concepts of SWNT tip growth and alumina-supported SWNT base growth to yield what we refer to as “odako” growth. In odako growth, an alumina flake detaches from the carbon surface and supports catalytic growth of dense SWNT arrays at the tip, leaving a direct interface between the carbon surface and the dense SWNT arrays. In addition to being a new and novel form of SWNT array growth, this technique provides a route toward future development of many important applications for dense aligned SWNT arrays. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号