共查询到20条相似文献,搜索用时 15 毫秒
1.
基于数据挖掘的Web个性化信息推荐系统 总被引:6,自引:0,他引:6
基于数据挖掘的Web个性化信息推荐日益成为一个重要的研究课题。文章设计了一个基于数据挖掘的Web个性化信息推荐系统(WPIRS)。在WPIRS中,提出了推荐策略,在推荐策略中考虑针对不同类型的用户采用不同的推荐算法。根据用户是否有新颖信息的需求,WPIRS采用了两种推荐算法。 相似文献
2.
3.
4.
随着新闻媒体技术的快速发展,网络新闻数量呈指数级增长。为了解决网络信息过载的问题,个性化新闻推荐扮演着极其关键的角色。它通过学习用户的浏览行为、兴趣爱好等信息,主动为用户提供感兴趣的新闻,从而提高用户的阅读体验。个性化新闻推荐逐渐成为新闻领域及计算机科学领域的研究热点和实践难题,业界专家已提出多种推荐算法用于提高推荐系统的性能。本文系统阐述个性化新闻推荐的国内外最新研究现状和进展,首先,简要介绍新闻推荐系统的架构,并对新闻推荐系统中核心推荐算法和常用评价指标进行研究。虽然个性化新闻推荐给用户带来很好的体验,但是潜移默化中也给用户带来很多未知的影响。跟其他新闻推荐综述不同的是,本文还结合新闻媒体专业研究了当前新闻推荐系统对用户行为产生的影响及面临的问题。最后,根据当前遇到的问题提出个性化新闻推荐的研究方向及未来工作重点。 相似文献
5.
孙多 《数字社区&智能家居》2007,(11):631-632
用户兴趣模型用于描述用户的个人信息、专业背景、偏好倾向和历史行为等,通过这些信息,系统可以发现和预测用户的信息需求,从而对用户进行个性化的信息推荐服务。用户兴趣模型是影响推荐系统服务效率的重要因素,因此针对用户兴趣进行建模是个性化推荐系统实现中要重点考虑的问题之一。本文从教育网站用户对象特点出发,提出了将用户兴趣分为固定兴趣与临时兴趣相结合的动态模型: 相似文献
6.
为了提高高校图书馆的图书借阅率,满足学生读者的个性化需求,本文设计了基于协同推荐的高校个性化图书推荐系统。系统使用java开发的B/S体系结构,采用基于用户的相似性的协同过滤推荐算法实现图书推荐。 相似文献
7.
席朝琼 《电脑编程技巧与维护》2013,(14):81-82,95
互联网已经成为日常生活不可或缺的重要组成部分,然而随着近年来爆炸式地增长,信息过载正逐渐制约着人们高效地获取有价值的信息,快速定位到个人真正感兴趣的资源是一个迫切需要解决的问题,个性化服务应运而生。系统以实际应用为开发背景,重点研究数据挖掘领域的Web挖掘技术。 相似文献
8.
孙多 《数字社区&智能家居》2007,(21)
用户兴趣模型用于描述用户的个人信息、专业背景、偏好倾向和历史行为等,通过这些信息,系统可以发现和预测用户的信息需求,从而对用户进行个性化的信息推荐服务.用户兴趣模型是影响推荐系统服务效率的重要因素,因此针对用户兴趣进行建模是个性化推荐系统实现中要重点考虑的问题之一.本文从教育网站用户对象特点出发,提出了将用户兴趣分为固定兴趣与临时兴趣相结合的动态模型. 相似文献
9.
个性化推荐系统能很好地解决互联网中信息过载的问题,传统推荐系统存在着商家较为分散、隐私容易泄漏的问题。提出了一种基于中间代理的电子商务智能推荐系统,利用内容过滤技术进行推荐,在考虑用户隐私的基础上使用向量空间模型挖掘用户的兴趣偏好和商品的特征评价,引入时间遗忘函数以处理兴趣变化问题,根据收集的信息产生推荐序列,针对重点难点问题提出了解决方案。采用Movielens数据集进行的实验结果表明,该方法能提供较好的推荐准确度与计算性能。 相似文献
10.
随着大数据的不断发展,基于数据挖掘的应用越来越广泛。通过对信息推荐系统的理论和技术问题进行研究,构建了基于数据挖掘环境下的电池信息推荐系统。利用数据挖掘技术研究信息推荐系统,解决Internet环境中信息资源系统的信息过载问题,为不同用户提供个性化的推荐服务,使用户具有更方便、有效的信息体验方式。 相似文献
11.
在实际商用的个性化推荐系统中,调度框架作为连接推荐算法和产品功能之间的纽带,会直接决定用户在什么时间、什么地点(位置)看到什么样的推荐内容,以及达到产品期待的推荐效果、所要消耗的资源和成本。因此,可以说调度框架决定了企业最终向用户提供的个性化推荐服务的最终质量。 相似文献
12.
郭静菡 《自动化技术与应用》2023,(10):108-112
针对当前个性化音乐智能推荐系统的用户满意度低问题,为此设计面向用户偏好的个性化音乐智能推荐系统。首先采集用户兴趣数据,采用知识本体构建用户个性化音乐兴趣模型,然后采用概率矩阵分解设计个性化音乐推荐算法,最后仿真实验测试系统性能。测试结果表明,系统推荐准确度较高,兴趣吻合度最高可达98.632%,情景吻合度最高可达99.250%,提升了下载与收藏平均精度,实时更新和推荐时延短,实时更新时延低于2 000 ms;实时推荐时延低于600 ms,系统的推荐性能与运行性能都很好。 相似文献
13.
成果 《计算机光盘软件与应用》2013,(21):27-27,29
随着社会的发展和科技的进步,应用在图书馆领域的先进技术也与日俱增,图书馆能够为用户提供的服务越来越受到业内人士的关注。通过研究笔者发现,传统的数字图书馆一般无法给顾客提供个性化的准确图书推荐服务,因此本文中笔者提出了一种图书馆智能推荐系统,通过数据挖掘技术来实现智能推荐功能,分析数据挖掘技术中关联的适用原因和规则,并介绍设计框架和结构,最后得出结论,以期能够为业内的研究和应用者提供参考和借鉴。 相似文献
14.
推荐系统是从大量信息中主动查找用户可能感兴趣的信息的工具.如何更好地贴近用户偏好,满足用户长期固有偏好的同时又能考虑到用户短期的兴趣焦点变化,是推荐系统长期研究的一个问题.此外,在对推荐系统进行设计时,为了提高推荐性能,除了专注于用户建模优化、推荐对象建模优化或推荐算法优化外,还需要将推荐系统作为一个整体进行系统性的研究,关注如系统流畅性、可伸缩能力等.针对这些问题,本文设计了一种实时推荐与离线推荐相结合的推荐系统,提出了采用待推荐池的方法保证系统的流畅性;在分析实时数据与历史数据的基础上,提供实时推荐与离线推荐,在贴合用户长期固有偏好的同时也能适应用户短时间内的兴趣焦点变化;采用控制模块对不同推荐结果数据进行控制调节,提高系统的可伸缩能力.基于该推荐系统,本文进行了对于微信文章的推荐实验,通过对待推荐池内数据进行分析来评价推荐效果,结果表明,推荐数据能够逐步贴近用户兴趣偏好. 相似文献
15.
个性化推荐系统是建立在海量数据挖掘基础上的一种智能平台,可以模拟商店销售人员向顾客提供商品信息和建议,为顾客购物提供完全个性化的决策支持和信息服务,它的目标是既满足用户意识到的需求,也能满足用户没有意识到的需求,或意识到,但没有表达出来的需求,让用户超越个体的视野,避免只见树木不见森林。好的推荐系统可以大大提高用户的忠诚度,并为电子商务带来了巨大的利益。 相似文献
16.
17.
18.
为满足用户需求,以用户为中心,解决用户关注度不断变化、数据稀疏性、优化时间和空间效率等问题,提出基于用户关注度的个性化新闻推荐系统。推荐系统引入个人兴趣和场景兴趣来描述用户关注度,使用雅克比度量用户相似性,对相似度加权求和预测用户关注度,从而提供给用户经过排序的新闻推荐列表。实验结果表明,推荐系统有效地提高了推荐精准度和覆盖度,改善了系统可扩展性和自动更新能力,具有良好的推荐效果。 相似文献
19.
20.
一个基于VSM的个性化信息推荐系统 总被引:1,自引:0,他引:1
为了帮助用户从Internet上方便地获得信息,针对Proxy用户环境设计了一个信息推荐系统。先通过Proxy日志挖掘获得用户兴趣,再根据向量空间模型为用户生成兴趣特征,并据此对用户进行信息推荐。系统通过服务评估和反馈来保证信息推荐的质量。 相似文献