首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Amino acids have a central role in cell metabolism, and intracellular changes contribute to the pathogenesis of various diseases, while the role and specific organ distribution of dipeptides is largely unknown. Method: We established a sensitive, rapid and reliable UPLC-MS/MS method for quantification of 36 dipeptides. Dipeptide patterns were analyzed in brown and white adipose tissues, brain, eye, heart, kidney, liver, lung, muscle, sciatic nerve, pancreas, spleen and thymus, serum and urine of C57BL/6N wildtype mice and related to the corresponding amino acid profiles. Results: A total of 30 out of the 36 investigated dipeptides were detected with organ-specific distribution patterns. Carnosine and anserine were most abundant in all organs, with the highest concentrations in muscles. In liver, Asp-Gln and Ala-Gln concentrations were high, in the spleen and thymus, Glu-Ser and Gly-Asp. In serum, dipeptide concentrations were several magnitudes lower than in organ tissues. In all organs, dipeptides with C-terminal proline (Gly-Pro and Leu-Pro) were present at higher concentrations than dipeptides with N-terminal proline (Pro-Gly and Pro-Leu). Organ-specific amino acid profiles were related to the dipeptide profile with several amino acid concentrations being related to the isomeric form of the dipeptides. Aspartate, histidine, proline and serine tissue concentrations correlated with dipeptide concentrations, when the amino acids were present at the C- but not at the N-terminus. Conclusion: Our multi-dipeptide quantification approach demonstrates organ-specific dipeptide distribution. This method allows us to understand more about the dipeptide metabolism in disease or in healthy state.  相似文献   

2.
3.
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease worldwide, but a reliable non-invasive method to quantify liver steatosis in primary healthcare is not available. Circulating microRNAs have been proposed as biomarkers of severe/advanced NAFLD (steatohepatitis and fibrosis). However, the use of circulating miRNAs to quantitatively assess the % of liver fat in suspected NAFLD patients has not been investigated. We performed global miRNA sequencing in two sets of samples: human livers from organ donors (n = 20), and human sera from biopsy-proven NAFLD patients (n = 23), both with a wide range of steatosis quantified in their liver biopsies. Partial least squares (PLS) regression combined with recursive feature elimination (RFE) was used to select miRNAs associated with steatosis. Moreover, regression models with only 2 or 3 miRNAs, with high biological relevance, were built. Comprehensive microRNA sequencing of liver and serum samples resulted in two sets of abundantly expressed miRNAs (418 in liver and 351 in serum). Pearson correlation analyses indicated that 18% of miRNAs in liver and 14.5% in serum were significantly associated with the amount of liver fat. PLS-RFE models demonstrated that 50 was the number of miRNAs providing the lowest error in both liver and serum models predicting steatosis. Comparison of the two miRNA subsets showed 19 coincident miRNAs that were ranked according to biological significance (guide/passenger strand, relative abundance in liver and serum, number of predicted lipid metabolism target genes, correlation significance, etc.). Among them, miR-10a-5p, miR-98-5p, miR-19a-3p, miR-30e-5p, miR-32-5p and miR-145-5p showed the highest biological relevance. PLS regression models with serum levels of 2–3 of these miRNAs predicted the % of liver fat with errors <5%.  相似文献   

4.
5.
The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), β cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications.  相似文献   

6.
The diagnostic and prognostic value of miRNAs in cutaneous melanoma (CM) has been broadly studied and supported by advanced bioinformatics tools. From early studies using miRNA arrays with several limitations, to the recent NGS-derived miRNA expression profiles, an accurate diagnostic panel of a comprehensive pre-specified set of miRNAs that could aid timely identification of specific cancer stages is still elusive, mainly because of the heterogeneity of the approaches and the samples. Herein, we summarize the existing studies that report several miRNAs as important diagnostic and prognostic biomarkers in CM. Using publicly available NGS data, we analyzed the correlation of specific miRNA expression profiles with the expression signatures of known gene targets. Combining network analytics with machine learning, we developed specific non-linear classification models that could successfully predict CM recurrence and metastasis, based on two newly identified miRNA signatures. Subsequent unbiased analyses and independent test sets (i.e., a dataset not used for training, as a validation cohort) using our prediction models resulted in 73.85% and 82.09% accuracy in predicting CM recurrence and metastasis, respectively. Overall, our approach combines detailed analysis of miRNA profiles with heuristic optimization and machine learning, which facilitates dimensionality reduction and optimization of the prediction models. Our approach provides an improved prediction strategy that could serve as an auxiliary tool towards precision treatment.  相似文献   

7.
Small noncoding RNAs that are 19–23 nucleotides long, known as microRNAs (miRNAs), are involved in almost all biological mechanisms during carcinogenesis. Recent studies show that miRNAs released from live cells are detectable in body fluids and may be taken up by other cells to confer cell-cell communication. These released miRNAs (here referred to as extracellular miRNAs) are often protected by RNA-binding proteins or embedded inside circulating microvesicles. Due to their relative stability, extracellular miRNAs are believed to be promising candidates as biomarkers for diagnosis and prognosis of disease, or even as therapeutic agents for targeted treatment. In this review, we first describe biogenesis and characteristics of these miRNAs. We then summarize recent publications involving extracellular miRNA profiling studies in three representative urologic cancers, including: prostate cancer, bladder cancer, and renal cell carcinoma. We focus on the diagnostic, prognostic, and therapeutic potential of these miRNAs in biological fluids, such as serum, plasma, and urine. Finally, we discuss advantages and challenges of these miRNAs in clinical applications.  相似文献   

8.
Transplant glomerulopathy develops through multiple mechanisms, including donor-specific antibodies, T cells and innate immunity. This study investigates circulating small RNA profiles in serum samples of kidney transplant recipients with biopsy-proven transplant glomerulopathy. Among total small RNA population, miRNAs were the most abundant species in the serum of kidney transplant patients. In addition, fragments arising from mature tRNA and rRNA were detected. Most of the tRNA fragments were generated from 5′ ends of mature tRNA and mainly from two parental tRNAs: tRNA-Gly and tRNA-Glu. Moreover, transplant patients with transplant glomerulopathy displayed a novel tRNA fragments signature. Gene expression analysis from allograft tissues demonstrated changes in canonical pathways related to immune activation such as iCos-iCosL signaling pathway in T helper cells, Th1 and Th2 activation pathway, and dendritic cell maturation. mRNA targets of down-regulated miRNAs such as miR-1224-5p, miR-4508, miR-320, miR-378a from serum were globally upregulated in tissue. Integration of serum miRNA profiles with tissue gene expression showed that changes in serum miRNAs support the role of T-cell mediated mechanisms in ongoing allograft injury.  相似文献   

9.
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises autoimmune disease entities that cause target organ damage due to relapsing-remitting small vessel necrotizing vasculitis, and which affects various vascular beds. The pathogenesis of AAV is incompletely understood, which translates to considerable disease- and treatment-related morbidity and mortality. Recent advances have implicated microRNAs (miRNAs) in AAV; however, their accurate characterization in renal tissue is lacking. The goal of this study was to identify the intrarenal miRNA expression profile in AAV relative to healthy, non-inflammatory and inflammatory controls to identify candidate-specific miRNAs. Formalin-fixed, paraffin-embedded renal biopsy tissue samples from 85 patients were obtained. Comprehensive miRNA expression profiles were performed using panels with 752 miRNAs and revealed 17 miRNA that differentiated AAV from both controls. Identified miRNAs were annotated to characterize their involvement in pathways and to define their targets. A considerable subset of differentially expressed miRNAs was related to macrophage and lymphocyte polarization and cytokines previously deemed important in AAV pathogenesis, lending credence to the obtained results. Interestingly, several members of the miR-30 family were detected. However, a validation study of these differentially expressed miRNAs in an independent, larger sample cohort is needed to establish their potential diagnostic utility.  相似文献   

10.
Myocarditis is an inflammatory disease of the heart with a viral infection as the most common cause. It affects most commonly young adults. Although endomyocardial biopsy and cardiac magnetic resonance are used in the diagnosis, neither of them demonstrates all the required qualities. There is a clear need for a non-invasive, generally available diagnostic tool that will still remain highly specific and sensitive. These requirements could be possibly met by microribonucleic acids (miRNAs), which are small, non-coding RNA molecules that regulate many fundamental cell functions. They can be isolated from cells, tissues, or body fluids. Recently, several clinical studies have shown the deregulation of different miRNAs in myocarditis. The phase of the disease has also been evidenced to influence miRNA levels. These changes have been observed both in adult and pediatric patients. Some studies have revealed a correlation between the change in particular miRNA concentration and the degree of cardiac damage and inflammation. All of this indicates miRNAs as potential novel biomarkers in the diagnosis of myocarditis, as well as a prognostic tool for this condition. This review aims to summarize the current knowledge about the role of miRNAs in myocarditis based on the results of clinical studies.  相似文献   

11.
Targeted immunotherapies have greatly changed treatment of patients with B cell malignancies. To further enhance immunotherapies, research increasingly focuses on the tumor microenvironment (TME), which differs considerably by organ site. However, immunocompetent mouse models of disease to study immunotherapies targeting human molecules within organ-specific TME are surprisingly rare. We developed a myc-driven, primary murine lymphoma model expressing a human-mouse chimeric CD22 (h/mCD22). Stable engraftment of three distinct h/mCD22+ lymphoma was established after subcutaneous and systemic injection. However, only systemic lymphoma showed immune infiltration that reflected human disease. In this model, myeloid cells supported lymphoma growth and showed a phenotype of myeloid-derived suppressor cells. The human CD22-targeted immunotoxin Moxetumomab was highly active against h/mCD22+ lymphoma and similarly reduced infiltration of bone marrow and spleen of all three models up to 90-fold while efficacy against lymphoma in lymph nodes varied substantially, highlighting relevance of organ-specific TME. As in human aggressive lymphoma, anti-PD-L1 as monotherapy was not efficient. However, anti-PD-L1 enhanced efficacy of Moxetumomab suggesting potential for future clinical application. The novel model system of h/mCD22+ lymphoma provides a unique platform to test targeted immunotherapies and may be amenable for other human B cell targets such as CD19 and CD20.  相似文献   

12.
Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM’s diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.  相似文献   

13.
Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn’s disease (CD). These are autoimmune diseases of the gastrointestinal tract with a chronic relapsing and remitting course. Due to complex interactions between multiple factors in the etiology of IBD, the discovery of new predictors of disease course and response to therapy, and the development of effective therapies is a significant challenge. The dysregulation of microRNAs (miRNAs), a class of conserved endogenous, small non-coding RNA molecules with a length of 18–25 nucleotides, that regulate gene expression by an RNA interference process, is implicated in the complex pathogenetic context of IBD. Both tissue-derived, circulating, and fecal microRNAs have been explored as promising biomarkers in the diagnosis and the prognosis of disease severity of IBD. In this review, we summarize the expressed miRNA profile in blood, mucosal tissue, and stool and highlight the role of miRNAs as biomarkers with potential diagnostic and therapeutic applications in ulcerative colitis and Crohn’s disease. Moreover, we discuss the new perspectives in developing a new screening model for the detection of colorectal cancer (CRC) based on fecal miRNAs.  相似文献   

14.
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.  相似文献   

15.
Pre-analytical factors have a significant influence on circulating microRNA (miRNA) profiling. The aim of this study was a comprehensive assessment of the impact of the anticoagulant type in blood collection tubes on circulating plasma miRNA profiles using small RNA sequencing. Blood from ten healthy participants (five males and five females from 25 to 40 years old) was taken in collection tubes with four different anticoagulants: acid citrate dextrose (ACD-B), sodium citrate, citrate-theophylline-adenosine-dipyridamole (CTAD) and dipotassium-ethylenediaminetetraacetic acid (K2 EDTA). Platelet-free plasma samples were obtained by double centrifugation. EDTA plasma samples had elevated levels of hemolysis compared to samples obtained using other anticoagulants. Small RNA was extracted from plasma samples and small RNA sequencing was performed on the Illumina NextSeq 500 system. A total of 30 samples had been successfully sequenced starting from ~1 M reads mapped to miRNAs, allowing us to analyze their diversity and isoform content. The principal component analysis showed that the EDTA samples have distinct circulating plasma miRNA profiles compared to samples obtained using other anticoagulants. We selected 50 miRNA species that were differentially expressed between the sample groups based on the type of anticoagulant. We found that the EDTA samples had elevated levels of miRNAs which are abundant in red blood cells (RBC) and associated with hemolysis, while the levels of some platelet-specific miRNAs in these samples were lowered. The ratio between RBC-derived and platelet-derived miRNAs differed between the EDTA samples and other sample groups, which was validated by quantitative PCR. This study provides full plasma miRNA profiles of 10 healthy adults, compares them with previous studies and shows that the profile of circulating miRNAs in the EDTA plasma samples is altered primarily due to an increased level of hemolysis.  相似文献   

16.
MicroRNAs control the differentiation and function of B cells, which are considered key elements in the pathogenesis of systemic lupus erythematosus (SLE). However, a common micro(mi)RNA signature has not emerged since published data includes patients of variable ethnic background, type of disease, and organ involvement, as well as heterogeneous cell populations. Here, we aimed at identifying a miRNA signature of purified B cells from renal and non-renal severe SLE patients of Latin American background, a population known to express severe disease. Genome-wide miRNA expression analyses were performed on naive and memory B cells and revealed two categories of miRNA signatures. The first signature represents B cell subset-specific miRNAs deregulated in SLE: 11 and six miRNAs discriminating naive and memory B cells of SLE patients from healthy controls (HC), respectively. Whether the miRNA was up or down-regulated in memory B cells as compared with naive B cells in HC, this difference was abolished in SLE patients, and vice versa. The second signature identifies six miRNAs associated with specific pathologic features affecting renal outcome, providing a further understanding for SLE pathogenesis. Overall, the present work provided promising biomarkers in molecular diagnostics for disease severity as well as potential new targets for therapeutic intervention in SLE.  相似文献   

17.
The liver is well recognized as a non-immunological visceral organ that is involved in various metabolic activities, nutrient storage, and detoxification. Recently, many studies have demonstrated that resident immune cells in the liver drive various immunological reactions by means of several molecular modulators. Understanding the mechanistic details of interactions between hepatic host immune cells, including Kupffer cells and lymphocytes, and various hepatic pathogens, especially viruses, bacteria, and parasites, is necessary. MicroRNAs (miRNAs), over 2600 of which have been discovered, are small, endogenous, interfering, noncoding RNAs that are predicted to regulate more than 15,000 genes by degrading specific messenger RNAs. Several recent studies have demonstrated that some miRNAs are associated with the immune response to pathogens in the liver. However, the details of the underlying mechanisms of miRNA interference in hepatic host–pathogen interactions still remain elusive. In this review, we summarize the relationship between the immunological interactions of various pathogens and hepatic resident immune cells, as well as the role of miRNAs in the maintenance of liver immunity against pathogens.  相似文献   

18.
Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.  相似文献   

19.
Beta thalassemia major (βT) is a hereditary anemia characterized by transfusion-dependency, lifelong requirement of chelation, and organ dysfunction. MicroRNA (miRNA) can be packed into extracellular vesicles (EVs) that carry them to target cells. We explored EV-miRNA in βT and their pathophysiologic role. Circulating EVs were isolated from 35 βT-patients and 15 controls. EV miRNA was evaluated by nano-string technology and real-time quantitative polymerase chain reaction (RT-qPCR). We explored effects of EVs on cell culture proliferation, apoptosis, and signal transduction. Higher amounts of small EV (exosomes) were found in patients than in controls. The expression of 21 miRNA was > two-fold higher, and of 17 miRNA < three-fold lower in βT-EVs than control-EVs. RT-qPCR confirmed differential expression of six miRNAs in βT, particularly miR-144-3p, a regulator of erythropoiesis. Exposure of endothelial, liver Huh7, and pancreatic 1.1B4 cells to βT-EVs significantly reduced cell viability and increased cell apoptosis. βT-EV-induced endothelial cell apoptosis involved the MAPK/JNK signal-transduction pathway. In contrast, splenectomized βT-EVs induced proliferation of bone marrow mesenchymal stem cells (BM-MSC). In summary, the miR-144-3p was strongly increased; βT-EVs induced apoptosis and decreased endothelial, pancreatic, and liver cell survival while supporting BM-MSC proliferation. These mechanisms may contribute to βT organ dysfunction and complications.  相似文献   

20.
microRNAs (miRNAs) regulate messenger RNA (mRNA) abundance and translation during key developmental processes including muscle differentiation. Assessment of miRNA targets can provide insight into muscle biology and gene expression profiles altered by disease. mRNA and miRNA libraries were generated from C2C12 myoblasts during differentiation, and predicted miRNA targets were identified based on presence of miRNA binding sites and reciprocal expression. Seventeen miRNAs were differentially expressed at all time intervals (comparing days 0, 2, and 5) of differentiation. mRNA targets of differentially expressed miRNAs were enriched for functions related to calcium signaling and sarcomere formation. To evaluate this relationship in a disease state, we evaluated the miRNAs differentially expressed in human congenital myotonic dystrophy (CMD) myoblasts and compared with normal control. Seventy-four miRNAs were differentially expressed during healthy human myocyte maturation, of which only 12 were also up- or downregulated in CMD patient cells. The 62 miRNAs that were only differentially expressed in healthy cells were compared with differentiating C2C12 cells. Eighteen of the 62 were conserved in mouse and up- or down-regulated during mouse myoblast differentiation, and their C2C12 targets were enriched for functions related to muscle differentiation and contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号