首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an earlier work, it was observed that the use of MoSi2 (up to 10 wt%) enhanced the densification and mechanical properties of TiB2. Therefore, the motivation of this study is three-fold: (a) to assess whether a small amount of MoSi2 addition can enhance wear resistance property, (b) to study whether the MoSi2 addition will influence the formation of a tribochemical layer, and (c) to correlate the wear resistance with material properties in TiB2–MoSi2 materials. In order to address these issues, a series of fretting experiments were conducted systematically by varying load (2, 5, and 10 N) at an oscillating frequency of 4 Hz and a 100 μm linear stroke, for a duration of 100 000 cycles with a cemented carbide (WC—6 wt% Co cermet) ball as a counterbody. The average coefficient of friction of the TiB2 samples varied within a narrow range (0.50–0.54), without being much affected by either the sintering additive or the load. The wear volume increased with increasing load, while the specific wear rate of all the TiB2 compositions falls within a mild wear regime (1.1–3.4 × 10−6 mm3/Nm). Based on the experimental results, it can be said that the addition of MoSi2 degrades neither the wear resistance properties nor the frictional properties of TiB2, within the investigated load regime. The microcracking-induced spalling has been found to be the dominant mechanism and, consequently, the wear volume is observed to have a linear dependency on the abrasion parameter. It is noteworthy that the tribo-oxidation as well as the formation of finer wear debris particles occurs to a limited extent.  相似文献   

2.
In the present work, we report the processing of ultrahard tungsten carbide (WC) nanocomposites with 6 wt% zirconia additions. The densification is conducted by the spark plasma sintering (SPS) technique in a vacuum. Fully dense materials are obtained after SPS at 1300°C for 5 min. The sinterability and mechanical properties of the WC–6 wt% ZrO2 materials are compared with the conventional WC–6 wt% Co materials. Because of the high heating rate, lower sintering temperature, and short holding time involved in SPS, extremely fine zirconia particles (∼100 nm) and submicrometer WC grains are retained in the WC–ZrO2 nanostructured composites. Independent of the processing route (SPS or pressureless sintering in a vacuum), superior hardness (21–24 GPa) is obtained with the newly developed WC–ZrO2 materials compared with that of the WC–Co materials (15–17 GPa). This extremely high hardness of the novel WC–ZrO2 composites is expected to lead to significantly higher abrasive-wear resistance.  相似文献   

3.
The densification of non-oxide ceramics like titanium boride (TiB2) has always been a major challenge. The use of metallic binders to obtain a high density in liquid phase-sintered borides is investigated and reported. However, a non-metallic sintering additive needs to be used to obtain dense borides for high-temperature applications. This contribution, for the first time, reports the sintering, microstructure, and properties of TiB2 materials densified using a MoSi2 sinter-additive. The densification experiments were carried out using a hot-pressing and pressureless sintering route. The binderless densification of monolithic TiB2 to 98% theoretical density with 2–5 μm grain size was achieved by hot pressing at 1800°C for 1 h in vacuum. The addition of 10–20 wt% MoSi2 enables us to achieve 97%–99%ρth in the composites at 1700°C under similar hot-pressing conditions. The densification mechanism is dominated by liquid-phase sintering in the presence of TiSi2. In the pressureless sintering route, a maximum of 90%ρth is achieved after sintering at 1900°C for 2 h in an (Ar+H2) atmosphere. The hot-pressed TiB2–10 wt% MoSi2 composites exhibit high Vickers hardness (∼26–27 GPa) and modest indentation toughness (∼4–5 MPa·m1/2).  相似文献   

4.
A new high-temperature material with excellent stress-sustaining characteristics at 1800°F. has been developed. The weight per cent composition of this Tic-base cermet is 55.4 TIC + 17.9 TiB2+ 16.7 Co + 10 Si, and the principal phases present after sintering are Tic, TiB2, and CoSi. The research on and development of this material and some of its physical properties are discussed.  相似文献   

5.
Compacts of TiB2 with densities approaching 100% are difficult to obtain using pressureless sintering. The addition of SiC was very effective in improving the sinterability of TiB2. The oxygen content of the raw TiB2 powder used in this research was 1.5 wt%. X-ray photoelectron spectroscopy showed that the powder surface consisted mainly of TiO2 and B2O3. Using vacuum sintering at 1700°C under 13–0.013 Pa, TiB2 samples containing 2.5 wt% SiC achieved 96% of their theoretical density, and a density of 99% was achieved by HIPing. TEM observations revealed that SiC reacts to form an amorphous phase. TEM-EELS analysis indicated that the amorphous phase includes Si, O, and Ti, and X-ray diffraction showed the reaction to be TiO2+ SiC → SiO2+ TiC. Therefore, the improved sinterability of TiB2 resulted from the SiO2 liquid phase that was formed during sintering when the raw TiB2 powder had 1.5 wt% oxygen.  相似文献   

6.
The present contribution reports the unlubricated friction and wear properties of Ti3SiC2 against steel. The fretting experiments were performed under varying load (1–10 N) and the detailed wear mechanism is studied using SEM-EDS, Raman spectroscopy, and atomic force microscopy. Under the selected fretting conditions, Ti3SiC2/steel tribocouple exhibits a transition in friction as well as wear behavior with coefficient of friction varying between 0.5 and 0.6 and wear rate in the order of 10−5 mm3·(N·m)−1. Raman analysis reveals that the fretting wear is accompanied by the triboxidation with the formation of TiO2, SiO2, and Fe2O3. A plausible explanation for the transition in friction and wear with load is proposed.  相似文献   

7.
Preferential grain growth is reported for hot pressed titanium diboride (TiB2) prepared at 1800°C and 50 MPa. Orientation imaging microscopy and X-ray diffraction revealed that the grains in the material were preferentially orientated with the [001] direction parallel to the mechanical field. The experimental findings are discussed, with emphasis on the anisotropic properties of TiB2.  相似文献   

8.
The efficiency of the Hall–Heroult electrolytic reduction of aluminum can be substantially improved by the use of a TiB2 cathode. The use of TiB2 components, however, has been hampered by the brittle nature of the material and the grain boundary attack of sintering-aid phases by molten aluminum. In the current work, TiB2 is toughened through the use of reinforcing fibers, with chemical vapor infiltration used to produce the TiB2 matrix. In early efforts it was observed that the formation of TiB2 from chloride precursors at fabrication temperatures below 900–1000°C may have allowed the retention of destructive levels of chlorine. At higher fabrication temperatures (>1000°C), using appropriate infiltration conditions as determined from the use of a process model, TiB2/THORNEL P-25 fiber composites have been fabricated in 20 h. The improved composite material has been demonstrated to be stable in molten aluminum in short-duration (24 h) tests.  相似文献   

9.
The use of monoclinic ZrO2 as an additive improves the mechanical properties of TiB2-based composites without the use of stabilizers. In particular, TiB2-30% ZrO2 compacts exhibited a transverse rupture strength of 800 MN/m2, few pores, and a KI c of 5 MPa·m1/2. The high strength and toughness are thought to result mainly from the presence of partially stabilized tetragonal ZrO2 and from solid solution of (TiZr)B2 formed in sintering.  相似文献   

10.
A novel microstructure of in situ produced TiC/TiB2/MoSi2 composite and its mechanical properties were investigated. The results indicate that TiC/TiB2/MoSi2 composites can be fabricated by reactive hot pressing the mixed powders of MoSi2, B4C, and Ti. A novel microstructure consisting of hollow particles of TiC and TiB2 grains in an MoSi2 matrix was obtained. Grains of in situ produced TiC and TiB2 were much finer, from 100 to 400 nm. During the fracture process, hollow particles relieved crack tip stress, encouraging crack branching and changing the original direction of the main crack. The highest bending strength of this composite achieved was 480 MPa, twice that of monolithic MoSi2, and the greatest fracture toughness of the composite reached 5.2 MPa·m1/2.  相似文献   

11.
The electrical resistivity of monocrystalline and polycrystalline TiB2, was measured under an inert atmosphere by a four-point ac impedance technique over the range 298 to 1373 K. The results are expressed in the form ρ-ρ298= m(T -298). The following values of ρ298 (μω.cm) and m (nω.cm-K-1) were determined: for polycrystalline TiB2 (69% dense) 18.2 and 95; for polycrystalline TiB2 (99% dense) 7.4 and 42; and for monocrystalline TiB2, 6.6 and 34.9.  相似文献   

12.
Hot pressing of TiB2 has been investigated with particular emphasis on the evolution of secondary phases originating from the initial surface oxide layer on the TiB2 powders. Carbothermal reduction of the surface oxides during sintering was also investigated by adding carbon to the TiB2 powder. TiO1− x C x was shown to be the main secondary phase in hot-pressed TiB2, and carbon was shown to strongly influence on sintering process and the amount, composition and distribution of the secondary phase TiO1− x C x . The formation of TiO1− x C x is discussed in relation to volatile boron oxide, which reacts with the graphite die to produce CO gas, which further may cause transport of carbon into TiB2 during sintering before pore closure. Finally it was demonstrated that the density could be controlled by addition of carbon to the TiB2 powder.  相似文献   

13.
The resistance of several polycrystalline TiB2 materials to penetration by liquid aluminum at 970°C was investigated, and their microstructures were characterized. The grain-boundary properties of individual diborides rather than the intrinsic properties of TiB2 are thought to control stress corrosion susceptibility in liquid metal environments.  相似文献   

14.
TiB2 ceramics are of interest for use as cathodes in aluminum reduction cells. The behavior of hot-pressed TiB2 ceramics (containing 0 to 10 wt% nickel with a 5- to 12-μm boride grain) in liquid aluminum at 950°C is reported.  相似文献   

15.
Carbon nanotubes (CNTs)–TiB2–Ni composites with improved mechanical properties were fabricated by hot pressing at 1600°C/30 MPa/1 h. The effects of CNTs content on the microstructural feature and mechanical properties were investigated. The incorporation of multiwall carbon nanotubes (MWNTs) could significantly improve the mechanical properties of the TiB2 cermet matrix composites. The main toughening mechanisms include CNTs pulling-out, crack deflexion, bridging, and CNTs rupture.  相似文献   

16.
TiB2–Cu ceramic–metal composites were prepared by combustion synthesis of elemental titanium, boron, and copper powders. The synthesized product consisted of two phases: TiB2 and copper. The addition of copper improved the strength and fracture toughness, thermal expansion coefficient, and thermal conductivity of TiB2. Thermal shock and ablation resistances of TiB2–Cu composites were studied using a plasma torch arc heater. Monolithic TiB2 failed catastrophically when the plasma arc flow reached the specimen surface. However, no cracks were found on the ablation surface of the TiB2–Cu ceramic–metal composites. The fractional mass loss was 4.09% for a TiB2–40Cu composite, which was close to the traditional W/Cu alloys. Volatilization of metal binder and mechanical erosion of TiB2 were observed to be the major ablation mechanisms. An ablation process model is proposed for the TiB2–Cu composites.  相似文献   

17.
Surface oxide contamination, which commonly occurs in fine TiB2 powders and afects their properties, can be removed by treatment with BCl3(g) at 650°C .  相似文献   

18.
Reactive hot pressing of Ti and BN powder mixtures is used to produce dense TiN x –TiB2 composites. The effect of excess Ti along with a small addition, ∼1 wt% Ni, on the reaction and densification of the composite was investigated. A composite of ∼99.9% relative density (RD) was produced at 1200°C at 40 MPa for 30 min with 1 wt% Ni, whereas composites produced without Ni are porous and contain residual reactants. The microstructural studies on composite samples with excess Ti produced at short durations indicate the presence of a transient (Ni–Ti) phase from which Ti is finally removed to form substoichiometric TiN x . The hardness of the dense TiN x –TiB2 composite is ∼22 GPa. The densification mechanism in this system is contrasted with the role of nonstoichiometry in the Zr–B4C system.  相似文献   

19.
Samples of a TiB2 ceramic containing 0 to 10 wt% Ni were fabricated by hot-pressing. Several properties, including fracture strength, indentation fracture toughness, and thermal expansion (between 25° and 1000°C) were measured. Resulting data were correlated with sample microstructure and composition.  相似文献   

20.
Up to 50 vol% of TiB2, TiC0.5N0.5, TiN, or TiC was added to Y2O3-stabilized tetragonal ZrO2 polycrystals (Y-TZP) and hot pressed under vacuum. The influence of the type of secondary phase on the microstructure and mechanical properties was studied, as a function of the hot-pressing temperature. The influence of the secondary-phase content on the mechanical properties was studied by varying the TiB2 content up to 50 vol%. Fully dense Y-TZP-based composites with very high toughness (up to 10 MPa·m1/2), excellent bending strength (up to 1237 MPa), and increased hardness, with respect to ZrO2 (Vickers hardness up to 1450 kg/mm2), were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号