首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enhancement of miscibility at the lower critical solution temperature (LCST) of the blends poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) (PVC/EVA), poly(vinyl chloride)/poly(styrene-co-acrylonitrile) (PVC/SAN) and poly(vinyl chloride)/poly(ethylene-co-vinyl acetate)/poly(styrene-co-acrylonitrile) (PVC/EVA/SAN) was observed at the micron level. Such miscibility is attributed to the dehydrochlorination and formation of hydrogen bonds between blend components. However, macrolevel immiscibility of these blends heated to the LCST was observed. Such microdomain compatibility of these blends gives a synergistic character. Brittle-type failure observed for LCST samples testifies to the synergism in treated blends. ©1997 SCI  相似文献   

2.
This paper deals with morphological studies of binary and ternary blends composed of poly(styrene-co-acrylonitrile) (SAN), polyurethane elastomer (TPU) and poly(ethylene-co-vinyl acetate) (EVA). Selective etching was found necessary to expose the morphologies of the blends. Chloroform or hot acetone, hexane/toluene (2/1v/v) and NaOH/CH3OH (1wt%) were found to be selective etching agents for SAN, EVA and TPU, respectively. SAN and TPU form blends with fine dispersion structure, while SAN and EVA lead to rough phase structure with poor phase adhesion. These results are in accordance with the difference in the mechanical properties of SAN/TPU and SAN/EVA. In addition, for SAN/TPU/EVA blends, if TPU is only a minor component, it is preferentially located at the interphase, playing the role of a compatibilizer. As the amount of TPU increases, the compatibility is gradually improved. ©1997 SCI  相似文献   

3.
The compatibilizing effect of poly(styrene-co-acrylonitrile) (SAN) whose acrylonitrile (AN) content is 25 wt % (SAN 25) in poly(acrylonitrile-co-butadiene-co-styrene) (ABS)/poly(vinyl chloride) (PVC) blend was studied when the AN content of the matrix SAN in ABS was 35 wt % (SAN 35). When some amount of matrix SAN 35 was replaced by SAN 25 in a ABS/PVC (50/50 by weight) blend, the mixed phase of SAN and PVC at the interface was thickened, and about a twofold increase of impact strength was observed. The changes in morphology, dynamic mechanical properties, and rheological properties by the compatibilizing effect of SAN 25 were observed. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 705–709, 1998  相似文献   

4.
The role of methods of blend preparation on polymer-polymer compatibility was investigated. Three different types of methods of blending, such as solution-casting, melt-mixing, and coprecipitation, were applied for three types of blend systems, viz., poly(vinyl chloride-co-vinyl acetate) (VYHH)/polystyrene (PS), VYHH/poly(styrene-co-acrylonitrile) (SAN), and VYHH/poly(methyl methacrylate) (PMMA) by measuring their glass transition temperatures (Tg) by a differential scanning calorimeter (DSC). It has been found that compatibility of the polymers depends on the method of blending and compatibility also varies from one blend system to another. Among the various types of blending methods, the coprecipitation method of blending gives the best compatibility result. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The rheological studies of the poly(vinyl chloride-co-vinyl acetate) and poly(styrene-co-vinyl acetate) and poly(styrene-co-acrylonitrile) blends were performed by a Brabender Rheotron at three different temperatures and also at different shear rates. Flow curves of the blends at different temperatures were drawn. The flow behavior index and, also, zero-shear viscosity of the blends at different temperatures were determined. From the flow curves, it has been found that as shear stress increases, melt viscosity decreases at all temperatures, indicating that pseudoplastic behavior and experimental values lies above the line of the log-additivity value and below the line of the additivity rule of mixture. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2577–2583, 1998  相似文献   

6.
The Fourier transform infrared (FTIR) spectroscopic studies of the poly-(styrene-co-acrylonitrile) (SAN) and poly(vinyl chloride-co-vinyl acetate) (VYHH) blends produced by different blending techniques, viz., solution blending, melt-blending, and also the co-precipitation methods of blending, were performed. In the case of miscible blend systems, substantial band shiftings took place, whereas immiscible blend systems showed slight or no band shifting. The miscible blends showed a substantial residual spectrum which was absent in the case of the immiscible system when a similar subtraction process was carried out. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 991–1000, 1997  相似文献   

7.
A simplified procedure with minimum input information for calculating an analytical equation of state for copolymer melts from density and surface tension at the room temperature, as scaling constants, is presented. The second virial coefficients are calculated from a two-parameter corresponding states correlation, which is constructed with two constants as scaling parameters, i.e., the molar density (ρ r) and surface tension at room temperature (γ r). This new correlation has been applied to the Tao–Mason equation of state to calculate the volumetric behavior of copolymer melts including poly(ethylene-co-propylene), poly(ethylene-co-vinyl acetate), poly(ethylene-co-metacrylic acid), poly(ethylene-co-acrylic acid), poly(ethylene-co-vinyl alcohol), poly(styrene-co-acrylonitrile), and poly(acrylonitrile-co-butadiene). The experimental specific volumes were correlated satisfactorily with our procedure and average absolute deviation percent for 7,431 data point is within 0.93 %.  相似文献   

8.
To study the effect of dispersed poly(butadiene-co-acrylonitrile) (NBR) rubber size on the physical properties of poly(styrene-co-acrylonitrile) (SAN)/NBR blends, SANs with various melt viscosities and acrylonitrile (AN) contents were examined. The dispersed size of NBR, whose AN content is 30 wt %, was reduced as the melt viscosity of the SAN matrix was increased or as the AN content of the SAN matrix was reduced in the range of 19–32 wt %. As the melt viscosity of the SAN matrix was increased, the damping peak of the NBR phase moved to a higher temperature, and as the AN content of SAN was reduced, the damping peak of the SAN phase moved to a lower temperature. Higher values of impact strength and elongation at break and reduced yield behavior at a low shear rate were observed at a finer dispersion of NBR. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 935–941, 1999  相似文献   

9.
Mechanical degradation and mechanochemical reaction in heterogeneous and homogeneous systems of poly(vinyl chloride) and poly(ethylene-co-propylene) polymer have been studied by ultrasonic irradiation at 30 °C. The rates of decrease in the number-average molecular weights of the degraded poly(vinyl chloride) and poly(ethylene-co-propylene) polymer were much faster in order of the solid poly(vinyl chloride)—poly(ethylene-co-propylene) polymer solution, the swelled poly(vinyl chloride)—poly(ethylene-co-propylene) polymer solution, and the homogeneous solution systems. On the other hand, mechanochemical reaction occurred by free radicals produced from the chain scissions of both polymers by ultrasonic waves. The changes in the composition of the total block copolymer, the unreacted poly(vinyl chloride), and the unreacted poly(ethylene-co-propylene) polymer in individual reaction systems were obtained. In addition, the microscopic observation of the surfaces of the polymers on before and after mechanochemical reaction is carried out. Received: 10 May 2000/Revised version: 1 August 2000/Accepted: 3 August 2000  相似文献   

10.
A new method to characterize individual interfaces in ternary polymer blends from experimentally measured fractional free volume from Positron Annihilation Lifetime Spectroscopy (PALS) has been developed. By this, we derive the composition dependent miscibility level in ternary polymer blends. This method has its genesis in KRZ (Kirkwood–Risemann–Zimm) theory which introduces hydrodynamic interaction parameter as a measure of excess friction generated at the interface between dissimilar polymer chains resulting in energy dissipation. The method successfully applied for binary blends has been theoretically modified to suit ternary blends in the present work. The efficacy of this method has been tested for two ternary blends namely polycaprolactone/poly(styrene‐co‐acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) and polycaprolactone/poly(vinyl chloride)/poly(vinyl acetate) (PCL/PVC/PVAc) in different compositions. We obtained a maximum effective hydrodynamic interaction (αeff) of ?12.60 at composition 80/10/10 of PCL/PVC/PVAc while PCL/SAN/PVC showed ?1.60 at 68/16/16 composition. These results suggest that these compositions produce high miscibility level as compared to other compositions. DSC measurements have also been used to supplement positron results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3335–3344, 2013  相似文献   

11.
The effects of styrene-co-acrylonitrile resin (AS) on the mechanical properties, morphology, and plasticizing and rheological behaviors of poly(vinyl chloride)/chlorinated polyethylene(PVC/CPE) blends are studied. The results show that the impact strength and the tensile strength are all increased and the plasticizing and rheological behaviors are also improved when a certain amount of AS is added into PVC/CPE blends, which are different in characteristics and regularity from plastics toughened with elastomers. It is blends of brittle—ductile transition regions (i.e., PVC/CPE = 100/10, 100/15) that can obviously be toughened by AS. The analysis of the morphological structure shows that AS promotes the formation of a CPE network that embeds the primary particles of PVC. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1455–1460, 1997  相似文献   

12.
The modification of the poly(ethylene-co-vinyl acetate) (EVA) by direct esterification of its ethylene—vinyl alcohol copolymer with mercaptoacetic acid was carried out. The amount of the mercaptan group was controlled to avoid gel formation during the graft polymerization with styrene by chain transfer. The chain transfer constant (Cs) of the SH groups and graft efficiency were measured. These graft copolymers were evaluated as a blend compatibilizer. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

14.
Polyblend fibers were made from mixtures of polypropylene (PP) and ethylene-vinyl acetate copolymers (EVA) or their mercapto-modified products [poly(ethylene-co-vinyl acetate-co-vinyl mercaptoacetate)] (EVASH). The presence of few EVA or EVASH in the PP fibers results in an increasing of the elastic modulus, indicating a reinforcing action of these functional polymers. The composition surface of the modified PP fibers was analyzed by X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2243–2249, 1997  相似文献   

15.
Blends of a poly(styrene-co-acrylonitrile) (SAN) with poly(ethene-co-1-octene) rubber (EOR) were investigated. An improved toughness–stiffness balance was obtained when adding as a compatibilizer a blend consisting of oxazoline-functionalized EOR, prepared by grafting EOR with oxazoline-functional maleinate, and poly(styrene-co-maleic anhydride) (SMA), which is miscible with SAN. Enhanced interfacial adhesion was evidenced by the improved dispersion of the EOR in the SAN matrix and the reduced glass transition temperature of the dispersed EOR phase. Morphology studies using transmission electron microscopy revealed formation of an interphase between the matrix and the rubber particles. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1685–1695, 1999  相似文献   

16.
Electro-conductive poly(vinyl alcohol)/multi-walled carbon nanotube (PVOH/MWNT) and poly(ethylene-co-vinyl alcohol) (EVOH)/MWNT nanocomposites were prepared by precipitation saponification method. The MWNT was functionalised by electron beam irradiation in air at 1200?kGy doses. The electrical resistivity, thermal and mechanical properties, and positive temperature coefficient (PTC) behaviour of these nanocomposites were investigated. The melting and crystallisation peak temperatures of both nanocomposite systems were shifted at a higher temperature with the increase in saponification time. Their crystallinity and mechanical strength also increased with saponification time, indicating an increase in intermolecular hydrogen bond between vinyl alcohol groups. With the saponification time, PTC peak temperature of EVA28/MWNT and EVA40/MWNT nanocomposites was shifted at a higher temperature and followed by a negative temperature coefficient (NTC) of resistivity. However, the saponified PVAc/MWNT nanocomposites showed only NTC behaviour over a temperature range of 30–140°C.  相似文献   

17.
Blends of poly(vinyl chloride) (PVC) and acrylonitrile-chlorinated polyethylene-styrene (ACS) graft copolymer were prepared by melt blending. Mechanical properties were studied by the use of dynamic mechanical analysis (DMA), impact tests, tensile tests, and scanning electron microscopy (SEM). The DMA study showed that PVC is immiscible with chlorinated polyethylene in ACS but partially miscible with poly(styrene-co-acrylonitrile) (25% acrylonitrile content) in ACS. Mechanical property tests showed that there is a significant increase in the impact strength while other good mechanical properties of PVC such as high modulus and high strength remain. SEM observations supported the results of the mechanical properties studies. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 399–405, 1997  相似文献   

18.
Summary Alternating propene-carbon monoxide copolymers (P-CO) were melt-blended with polystyrene, poly(styrene-co-acrylonitrile) (SAN), and with poly(styrene-co-maleic anhydride) (SMA). P-CO forms homogeneously miscible blends with SAN containing 25 wt% AN at the investigated blend compositions. The transparent blends have single, intermediate glass transition temperatures that fit the Fox equation. The elastic properties of P-CO at room temperature disappear upon blending with SAN because the T g is driven above RT. Polystyrene and SMA are not miscible with P-CO and form heterogeneous blends with two glass transitions. This demonstrates that both the polarity of the styrenic copolymer and the nature of the comonomer govern its phase behavior. Received: 14 January 1999/Revised version: 19 April 1999/Accepted: 19 April 1999  相似文献   

19.
In the present work, blends between poly(methyl methacrylate) (PMMA) and poly(ethylene-co-vinyl acetate) (EVA) rubbers obtained by in situ polymerization of the acrylic monomer in the presence of the rubber have been investigated by linear elastic fracture mechanics (LEFM), by Charpy impact tests, and by scanning electron microscopy (SEM). Particularly, a correlation among molecular weight and composition of the EVA rubbers, phase structure development, and, consequently, mechanical impact properties of the resulting blends has been drawn.  相似文献   

20.
The miscibility behaviour of blends of poly(N-vinyl pyrrolidone) (PVP) with poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVAc) and vinyl chloride–vinyl acetate (VCVAc) copolymer has been investigated on the basis of a viscometric approach. PVP is found to be miscible with PVC over the entire composition range, as is evident from the high values observed for the intrinsic viscosity of transfer. This is further supported by the single glass transition temperature observed in differential scanning calorimetry studies of the blend films. Blends of PVP with VCVAc copolymer exhibit microphase separation which is shown clearly in the scanning electron micrographs of the films. PVAc/PVP blends show interaction only at low PVAc contents, but in general are immiscible. © of SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号