首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of multistage emulsion polymerization to produce particles containing multiple polymer phases is widespread throughout the coatings, impact plastics and adhesives industries. Such composite particles often improve various application properties compared to related single-phase latices or latex blends. The properties obtained depend in large part on the morphology of the multiphase particles, creating an incentive to understand the underlying mechanisms that drive morphology development in these particles as they are formed in the polymerization reactor. Much attention has been devoted to understanding the thermodynamic factors that influence morphology control, but in fact the majority of systems are produced under kinetic control, resulting in non-equilibrium structures. There are three main kinetic factors involved as the morphology develops during the second stage polymerization. These are (1) penetration of polymer radical chains into the particle interior after entry from the water phase, (2) phase separation of immiscible polymer chains produced in the different polymerization stages and (3) spatial rearrangement of phase separated domains. We have summarized our knowledge and understanding of morphology development in a concise decision tree flow chart which can be used for morphology prediction. The validity and use of this decision tree is illustrated through a series of experimental examples.  相似文献   

2.
The synthesis of micron-sized polymer particles with a core-shell pomegranate-like morphology is presented. The proposed polymerization technique takes advantage of a reaction-induced micro-phase separation within a suspended organic liquid droplet containing monomer, a chemical initiator, a steric stabilizer, and a poor solvent for the polymer. With an increase in monomer conversion, the monomer droplet suspended in a continuous aqueous medium is transformed first into a micro-capsule with a thick pericellular membrane, and eventually into a polymer particle packed with 300-500 nm polymer sub-particles. The experimentally observed evolution of particle morphology indicates that the reaction pathway is strongly influenced by micro-phase separation and transport phenomena. In the first stage of polymerization, a pseudo-homogeneous polymerization takes place at the droplet surface, followed by a starved macro-dispersive polymerization in the inner region where polymer precipitates out from the solvent phase as nano-sized sub-particles.  相似文献   

3.
BA悬浮溶胀接枝聚合PVC的制备与性能研究   总被引:1,自引:0,他引:1  
采用水相悬浮溶胀聚合的方法在PVC颗粒内部原位接枝丙烯酸丁酯(BA),考察了反应温度、分散剂用量对接枝反应和颗粒形态的影响,结果表明:接枝率随反应温度的升高而增大,分散剂用量为1.0份时,产物的颗粒形态规则,与PVC共混物的力学性能较好.PVC-g-BA/PVC共混体系动态力学性能分析(DMA)的结果表明:两相呈微观相态分离的结构特点;转矩流变性能测试结果表明:交联剂用量为3份时,PVC-g-BA/PVC共混体系的塑化性能较好.  相似文献   

4.
Inorganic submicron particles, such as TiO2, were modified with titanate coupling agents. The structure and stability of some titanates, both in solution and at the particle surface, were investigated by various methods. The modified titanium dioxide was dispersed in a solution of sodium dodecylsulphate (SDS) in water. The surfactant adsorbs at the now hydrophobic particle surface, thus creating a micellelike structure with an inorganic particle in the centre. In this system an emulsion polymerization of methyl methacrylate was carried out. Product formed at the particle surface is either physically bound by entanglement or chemically bound by covalent bonding to the titanates. In this way a core-shell morphology is obtained with an inorganic core and a polymer shell. The effects of several reaction parameters on the kinetics of the polymerization were studied. The encapsulated TiO2 particles may offer interesting prospects in those applications where good coupling between polymer matrix and inorganic particles is necessary, such as latex paints and polymer composite materials.  相似文献   

5.
一步聚合法合成多孔磁性高分子微球及其机理研究   总被引:1,自引:0,他引:1  
孙爱娟  郭建欣 《应用化工》2011,40(1):75-77,81
在羰基铁粉存在下,将苯乙烯与甲基丙烯酸甲酯通过悬浮聚合方法制备了表面多孔的磁性高分子微球。采用SEM、FTIR及XRD等对样品进行了表征。研究表明,聚合形成的磁性高分子微球表面粘附着40 nm左右的聚合物粒子,这些粒子之间形成孔隙。具有两亲性和可接枝聚合的明胶分子促成了单体在羰基铁粉表面引发并聚合。  相似文献   

6.
Vinyl chloride suspension polymerization was carried out in a pilot‐scale reactor to study the effects of different methods of initiator addition on poly(vinyl chloride) (PVC) resin properties. The experiments used different arrangements for adding the initiator to the reactor, whereas other reaction conditions were the same: (i) initiator was added to the continuous aqueous phase and then monomer was dispersed in it (conventional method); (ii) initiator was predissolved in monomer before dispersing in the continuous aqueous phase; and (iii) suspending agents along with initiator were added to the monomer before polymerization. The PVC resin prepared by method of (i) had a higher monomer conversion and a higher Sauter mean diameter of grains with a narrow particle size distribution comparable to that of PVC resins by other methods. Scanning electron microscopy showed more uniform particles and fused primary particles in the grains, which confirms lower porosity and lower cold plasticizer absorption (CPA) for PVC grains produced by procedure of (ii). The results showed that when the suspending agents were also predispersed in monomer along with initiator (iii), CPA increases dramatically due to internal porosity of the grains. Simultaneously, a marked decrease in Sauter mean diameter was apparent. Scanning electron microscopy micrographs show that primary particles in the interior of PVC grains prepared by the latter method are looser, and there is more free volume between primary particles resulting the high internal porosity and consequently higher CPA. Mercury porosimetry analysis also confirms these results. K value as a molecular weight characteristic for all methods was the same . J. VINYL ADDIT. TECHNOL., 24:116–123, 2018. © 2016 Society of Plastics Engineers  相似文献   

7.
In a previous study, it was found that monodisperse polystyrene (PSt) hollow particles can be prepared under special conditions by combining a Shirasu Porous Glass (SPG) emulsification technique and subsequent suspension polymerization process. That is, a mixture of styrene (St), N,N‐dimethylamino ethyl methacrylate (DMAEMA), hexadecane (HD), and initiator N, N′‐azobis(2,4‐dimethylvaleronitrile) (ADVN) was used as the dispersed phase in an aqueous phase containing poly(vinyl pyrrolidone) (PVP), sodium lauryl sulfate (SLS), and water‐soluble inhibitor. The dispersed phase was created by pushing the oil phase through the uniform pores of an SPG membrane into the continuous phase to form uniform droplets. Then, the droplets were polymerized at 70°C. It has been puzzling that hollow microspheres were obtained only when sodium nitrite (NaNO2) was used as a water‐soluble inhibitor, while one‐hole particles were formed when hydroquinone (HQ) or diaminophenylene (DAP) was used. In this study, the mechanism of formation of the hollow microspheres was verified by measuring the variation of diameter, molecular weight distribution, and monomer conversion, and by observing morphological changes during the polymerization, as well as by changing the type and amount of hydrophilic monomer, and initiator. It was found that the diameter of the oil droplets decreased, and a large amount of secondary new particles formed immediately after polymerization started in the case of NaNO2. However, there was no such apparent behavior to be observed when HQ or DAP was used. It was determined that the hollow particles formed due to the rapid phase separation between PSt and HD, and as a consequence, a large amount of monomer diffused into the aqueous phase to form the secondary particles. Rapid phase separation confined the HD inside the droplets, a nonequilibrium morphology. On the other hand, one‐hole particles, representing an equilibrium morphology, formed when the phase separation occurred slowly because a lot of monomer existed inside of the droplets to allow mobility of the PSt. The addition of DMAEMA allowed the hollow particles to be formed more easily by decreasing the interfacial tension between the copolymer and aqueous phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1530–1543, 2002  相似文献   

8.
介绍了制备疏松PVC树脂的两种新聚合方法——以正丁烷为反应介质分散聚合和悬浮态乳液聚合,并对树脂颗粒的特性进行了简述。结果表明:以正丁烷为反应介质的非均相VC分散聚合所得树脂的粒径和颗粒形态与聚合体系VC/But比例和转化率等有关,由于存在向But的链转移,PVC分子质量小于相同聚合温度下生产的悬浮PVC树脂。悬浮态乳液聚合所得树脂粒径分布和颗粒形态与水油比、转化率和添加剂品种有关。  相似文献   

9.
Composite heterophase organic–inorganic hybrid cryogels of poly(vinyl alcohol) (PVA) containing silica constituents were prepared and studied. Such constituents were formed in the course of hydrolytic polycondensation (sol‐gel process) of tetramethoxysilane (TMOS) introduced in to the aqueous polymer solution prior to its freeze–thaw treatment. It was shown that moderate (over the range of ?15 to ?30°C) freezing, then frozen storage, and subsequent thawing of the water/PVA/TMOS systems resulted in the formation of macroporous composite cryogels filled with dispersed silica particles (discrete phase). The continuous phase of such gel materials represents the supramolecular PVA network, which is supposed to be additionally cured with the silicon‐containing oligomeric cross agents formed from TMOS in the course of hydrolytic polycondensation. The incorporated silica components influenced the morphology of cryogels. The effects of significant increase in gel strength and heat resistance with increasing TMOS concentration in the initial feed and with thawing rate decreasing have also been observed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
A new emulsion polymerization process, in which water acted as the dispersed phase and a mixture of methyl methacrylate (MMA) and cyclohexane acted as the continuous phase, was applied to the preparation of a poly(methyl methacrylate) (PMMA) resin. The primary (latex) particles were formed in the early stage of polymerization and coagulated as the polymerization conversion increased. Scanning electron micrographs showed that the final PMMA particles were porous and composed of loosely aggregated primary particles. The porosity characterized by cold di(2‐ethylhexyl) phthalate absorption increased as the water/oil and cyclohexane/MMA mass ratios increased. The PMMA primary particles were smaller than the primary particles in the PMMA resin prepared by suspension polymerization in the presence of cyclohexane. Because of the phase composition of the reaction system, the solubility of PMMA in a mixture of cyclohexane and MMA, and the particle morphology of PMMA, a particle formation mechanism, including the formation, growth, and coagulation of primary particles in dispersed water droplets, was proposed. The primary particles formed mainly through a homogeneous nucleation mechanism and increased in size as MMA diffused from the oil phase to the water phase to the primary particles. The coagulation of the primary particles occurred because of the lower colloidal stability and the space limitations of the primary particles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1905–1911, 2004  相似文献   

11.
Electrorheological (ER) fluid or suspension containing lithium salt of poly(acrylic acid) were synthesized directly by inverse emulsion polymerization. Effects of the amounts of crosslinking agent and the stabilizer and neutralization degree used in the polymerization, as well as water content of the polymer particles on the ER activity were investigated. The ER suspension exhibited maximum yield stress at optimum amounts of stabilizer and crosslinking agent used in the inverse emulsion polymerization, as well as at optimum water content of the polymer particles. Glycerol was tried to be used as an activator instead of water and was shown to have a favorable effect on the thermal stability of the ER suspension. Core–shell-type polymer particles were synthesized through inverse emulsion polymerization with supplemental addition of a second monomer. The ER suspension containing particles with poly(lithium acrylate) as core and polyacrylamide as shell showed better ER behavior than those without the polyacrylamide shell. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2169–2174, 1998  相似文献   

12.
A tracer dye technique was used to investigate the effect of turbulence intensity, stirring time, and the type and concentration of the suspending agent, partially hydrolyzed poly(vinyl acetate) (PVA), on the coalescence rate of vinyl chloride monomer (VCM) droplets in an agitated liquid–liquid dispersion. It was found that the extent of coalescence rises slowly with mixing time, is roughly proportional to the agitation speed, and decreases sharply when the concentration of stabilizer is increased. Coalescence rate depended on the degree of hydrolysis of the stabilizer. The method of addition of initiator during VC suspension polymerization was also studied and its effects on the polymerization conversion and final PVC particles' properties were determined. It was found that the polymerization reaction occurs more uniformly in all the VCM droplets when the initiator was predissolved in the VCM prior to reaction compared with the case when the initiator was predispersed in the continuous water phase. Also, for the same reaction time, the conversion was higher in the former case. During polymerization, the concentration of PVA in the aqueous phase decreased substantially and the porosity of the polymer particles was reduced. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Limited kinetic information on a convenient process for depositing polymer in 5-oz cattlehide is presented in this article. The work includes a systematic study of the total polymerization rate and of the derived rates of deposition into the fibrous matrix, of bound polymer formation, and of polymer production in the external aqueous phase (the float) for three acrylic monomers. The monomers used, with a persulfate–bisulfite redox initiating system at 27°C, were methyl methacrylate (MMA), n-butyl acrylate (BA) and a fixed mixture of n-butyl acrylate and methyl methacrylate (BA + MMA). The effects of the reaction variables on rate, as measured by their intensity exponents, were not in agreement with a rate expression proposed to describe grafting in homogeneous polymerization, nor were they wholly compatible with classical and modified Smith–Ewart theories for heterogeneous emulsion polymerization. The experimental behavior, however, was in harmony with self-nucleation in the aqueous phase. Exponential orders of dependence were initiator > 0.5 (MMA, 0.72; BA + MMA, 0.66); monomer, zero; surfactant, ~0.5. The approximately 0.6 order dependence (MMA, 0.9) on leather amount was shown to be largely apparent and to decline as total polymerization proceeded. Thus a dominant grafting reaction was not supported. In support of this conclusion, simple impregnation of the matrix with preformed emulsion polymer yielded the same amount of bound polymer as that formed in situ. It was concluded that monomer is initiated largely from active centers formed initially near fibers or fibrils to form embryo polymer particles, which join penetrating swollen polymer particles and become unstable. These nucleate a polymer front, containing occluded radicals, which grows by diffusion regulated transport of monomer to complete deposition.  相似文献   

14.
Polyethylene hollow spheres with diameters of 0.4–2 mm were synthesized by a two‐step slurry polymerization in a single reactor with a spherical MgCl2‐supported Ziegler‐Natta catalyst activated by triethylaluminum, in which the first step was prepolymerization with 0.1 MPa propylene and the second step was ethylene polymerization under 0.6 MPa. The prepolymerization step was found necessary for the formation of hollow spherical particles with regular shape (perfectly spherical shape). The effects of adding small amount of propylene (propylene/ethylene < 0.1 mol/mol) in the reactor after the prepolymerization step were investigated. Average size of the polymer particles was increased, and the polymerization rate was markedly enhanced by the added propylene. Development of the particle morphology with polymerization time was also studied. The polymer particles formed by less than 20 min of ethylene polymerization showed hollow spherical morphology with thin shell layer. Most of the particles had ratio of shell thickness/particle radius smaller than 0.5. By prolonging the ethylene polymerization, the shell thickness/particle radius ratio gradually approached 1, and the central void tended to disappear. Central void in polymer particles formed from smaller catalyst particles disappeared after shorter time of polymerization than those formed from bigger catalyst particles. The shell layer of the hollow particles contained large number of macro‐, meso‐ and micro‐pores. The mesopore size distributions of four typical samples were analyzed by nitrogen adsorption–desorption experiments. A simplified multigrain model was proposed to explain the morphogenesis of the hollow spherical particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43207.  相似文献   

15.
A thermodynamic analysis and a mathematical model were derived to describe the free energy changes corresponding to various possible morphologies in composite latex particles. Seeded batch emulsion polymerization was carried out at 70°C using as seed monodisperse polystyrene latex particles having different surface polarity. The surface polarity was estimated by contact angle measurement at the latex “film”/water interface for octane as the probe liquid. Methyl methacrylate and ethyl methacrylate were polymerized in a second stage seeded emulsion polymerization using polystyrene particles as seed in the presence of a nonionic stabilizer, nonyphenol polyethylene oxide (Igepal Co-990). Two types of initiators, potassium persulfate (K2S2O8) and azobisiobutyronitrile (AIBN), were used to change the interfacial tension between the second stage polymer (in monomer) and water interface. The values of the interfacial tension of polymer solutions in the second stage monomer vs. the aqueous phase, measured by drop-weight–volume method under conditions similar to those prevailing during the polymerization, correlated well with the determined particle surface polarity and the observed TEM particle morphology. The results showed that, rather than the polymer bulk hydrophilicity, the surface particle polarity is the controlling parameter in deciding which phase is inside or outside in the composite particle. The variation of the polymer phase interfacial tension with polymer concentration was also estimated. Based on experimentally measured interfacial tensions, composite particle configurations were predicted. The predicted morphologies showed good agreement with the observed particle morphologies of the composite latexes.  相似文献   

16.
Ji Hoon Park 《Polymer》2010,51(14):3014-5447
The present work demonstrates the possible use of emulsion polymerization for fabricating structured-polymer particles which can store active materials. The hollow polymer particles were synthesized by multi-stage emulsion polymerization consisting of four main stages, (1) the preparation of alkali-swellable core latexes containing active materials, (2) first core-shell polymerization of a monomer mixture of methyl methacrylate (MMA), butyl acrylate (BA) and methacrylic acid (MAA), (3) second core-shell polymerization of styrene and (4) a neutralization stage. The morphology of synthesized capsules was observed by transmission electron microscopy (TEM). The size of the capsule prepared by standard recipe was around 300 nm and the polydispersity index was 0.024 representing that size distribution was highly monodisperse. The specific target material of encapsulation was the phosphoric acid partial ester. The amount of phosphoric acid partial ester encapsulated was determined by thermogravimetric analysis (TGA). From studies of encapsulation behaviors, it was found that the encapsulation efficiency and location of phosphoric acid partial ester in the interior of the particles were mainly dependant on its partition coefficient. In addition, the morphology of polymer capsule was manipulated by varying process parameters. The morphology changes, such as those of pore size and roughness of polymer shell, were characterized by scanning electron microscopy (SEM) and analysis of nitrogen adsorption and desorption isotherm. When neutralized with N,N′-dimethylethanolamine simultaneously during the styrene polymerization, the surface area of polymer capsule was increased drastically by about 5 times due to the formation of mesopores and the roughening of the surface on the hollow polymer shell.  相似文献   

17.
In the preparation of acrylonitrile–vinylacetate copolymer (93:7 in weight) by continuous polymerization in aqueous medium using the complete mixing type reactor, the author and co-workers studied the effects of the water/monomer ratio on polymer properties and polymerization. They reported that the structure of a polymer particle becomes more compact with decreasing water/monomer ratio. This was noted in studying the physical properties of the polymer and the formation of polymer particles in this system. 1,2 Here the author has performed kinetic studies based on the results of polymerization to determine the loci of the polymerization in the range of water/monomer ratio roughly from 1.75 to 4.0. Most of the primary radicals from the initiators attack the monomers in the aqueous phase to form monomer radicals attached to initiator fragments, and most of the monomer radicals grow to form polymer radicals until termination occurs in the aqueous phase. Hence, the loci of polymerization in this system are not the surfaces and inner parts of the polymer particles, the diameters of which are roughly from 20 to 60 μm observed by a microscope, but the aqueous phase excluding these particles.  相似文献   

18.
γ‐Radiation vulcanized natural rubber latex/phase transfer/bulk polymerization is a novel process for the preparation of toughened polystyrene based on natural rubber latex. The negatively charged γ‐radiation vulcanized natural rubber latex was first titrated with benzyldimethylhexadecylammonium chloride in the presence of a styrene monomer. At a critical transfer concentration, the crosslinked rubber particles transferred from the aqueous phase into the styrene phase in which they swelled, depending on the irradiation dose used. By bulk polymerization of the styrene phase containing transferred particles, the polymer blends exhibited two‐phase morphology similar to that of commercial high‐impact polystyrene that was microscopically obtained. The final product showed an increase in the unnotched Izod impact energy over the unmodified polystyrene. The effect of irradiation dose, rubber content, and initiator concentration on the impact property and morphology of toughened polystyrene prepared was investigated. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1333–1345, 1999  相似文献   

19.
本文研究了以偶氮二异丁腈(AIBN)引发的偏氯乙烯(VDC)-丙烯腈(AN)-苯乙烯(St)悬浮聚合颗粒的粒径及其分布。实验发现在该体系中存在两种成粒机理:单体液滴的珠状成粒和水相聚合沉淀成粒。水相聚合是由于AN的水溶性增加了AIBN在水中的溶解度所致。加入亚硝酸钠(NaNO2)可以有效减少水相聚合生成物,使悬浮颗粒的粒径分布变窄。  相似文献   

20.
Emulsion and suspension polymerization processes have widely been studied for more than 40 years. Although both polymerization processes are performed in heterogeneous media, each one presents its own typical characteristics, such as the particle size distribution, molecular weight distribution, polymer particle nucleation rate, and polymerization rate. In this study, semibatch styrene suspension polymerizations were carried out with feed compositions typical of emulsion processes. The initial reactor charge resembled the recipe of standard styrene suspension polymerizations, and the emulsion polymerization constituents were added during the batch. The influence of the moment at which the emulsion feed was started on the course of the polymerization and the effects of the feed on the polymer properties were analyzed. The polymer particle morphology and the average molecular weights changed very significantly with the emulsion feed time, and the changes could lead to the production of broad molecular weight distributions. Core–shell polymer particles could also be obtained, with the core being formed of polymer particles originating from the suspension polymerization process and the shell being formed of polymer particles originating from the emulsion polymerization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3021–3038, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号