首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With increasing demands for electric power, the electric power system is becoming more and more complicated, and the stable, highly reliable delivery of electric power is encountering two major problems, namely, large fault currents and power system instability. In particular, the fault currents occurring in power systems are tending to increase. To solve this problem, superconducting fault current limiters (SCFCLs) have been developed, and it is hoped that they will also solve the problem of power system stability. This paper describes the results of experiments on the improvement of power system stability and the suppression of fault currents with SCFCLs, performed with power transmission simulators. An experiment using an R‐type SCFCL in a power system was performed. An R‐type SCFCL was simulated by using a resistor and an electromagnetic contactor with thyristors. It was found that the inclusion of an SCFCL in the electric power system gives improved suppression of fault currents and improved power system transient stability. © 2000 Scripta Technica, Electr Eng Jpn, 133(4): 41–52, 2000  相似文献   

2.
3.
Superconducting technology is regarded as a breakthrough to future electric power transmission because of its highly densified and large transmission capability. This paper proposes a concept of the future power system composed of various superconducting apparatuses. A prototype model system called “PROMISE (PROspective power transmission Model system Integrated under Superconducting Environment)” is constructed to prove the realization of the above concept. PROMISE is composed of a superconducting transformer (60 Hz, 6/3 kV, 1000 kVA class), superconducting fault current limiter (6 kV, 200 A class), and superconducting power cable (5 m, 6 kV, 650 A class). This paper also shows that PROMISE realized the transmission of the electric power of 3.8 kV–460 kVA (50 Hz). This is the first achievement in the world. The voltage-current synthetic test verified that PROMISE can withstand ac voltage of 6 kV while carrying ac current of 170 A (60 Hz). The ac loss of superconducting cables, the heat leak of cryostat and the core loss of the superconducting transformer are measured to estimate the transmission loss of PROMISE. These fundamental performances of PROMISE may indicate the feasibility of the future introduction of superconducting technology for electric power systems.  相似文献   

4.
In this paper, the Fault Current Limiter (FCL) is used to restore the coordination between the protection devices in distribution systems with high-level of DG penetration. The FCL allocation may be described as an optimization problem involving multiple objective functions which are contradictory and of different dimensions. So, it is formulated as a multi-objective constrained nonlinear programming problem. The interaction among different objectives gives rise to a set of compromised solutions, largely known as the Pareto-optimal solutions. The objectives are to simultaneously minimize: the increase in fault current levels due to the penetration of DG, voltage sag, and the total cost (size) of required limiters. The optimization problem is solved using Particle Swarm Optimization (PSO). The method is applied to two distribution test systems. Effects of different operating factors are assessed. Comparative analysis of results is provided.  相似文献   

5.
In this paper, a new hybrid fault current limiter is proposed for primary distribution systems. It incorporates a high temperature superconducting element in parallel with other two branches. The first is an inductive impedance to share the fault current with. The second branch is a gate-turn-off thyristor switch controlled to work in either of two modes. For the main mode, it controls the temperature of the superconducting element and protect it against damaging excessive heating. Instead, it keeps the device applicable without that superconducting element in the auxiliary operation mode. The design, control and operation of the device is addressed. Its performance in 11 kV distribution systems with DG is investigated. The factors affecting the device behavior for different scenarios are explored.  相似文献   

6.
A novel three-phase conducting fault current limiting reactor (SCFCLR) is fabricated. The SCFCLR has three superconducting windings with the same number of turns wound on an iron core. The rating of SCFCLR is 200 V, 10 A. Two SCFCLRs are inserted in the sending and the receiving ends of the model power-transmission line. The line fault test of a model power system with two SCFCLRs is undertaken. The fundamental behavior of this reactor is confirmed. In the case of single-line-to-ground fault, the fault current is limited to a very small value by the large zero-phase sequence reactance of the SCFCLR without quench. In the case of a three-phase short circuit, the SCFCLR quenches, and the short-circuit current is limited by the normal conducting resitance of the winding. It is confirmed that the transient stability of the system during line faults is greatly improved by the insertion of SCFCLRs.  相似文献   

7.
In general, predictions of the limiting characteristics of a resistive superconducting fault current limiter (SFCL) include the electrical and thermal behaviour of the superconductor. Acknowledging that these two phenomena have very different time scales for limiters inserted in an electric power system, we propose in this paper a root mean squared (RMS) thermoelectric model for a resistive-type superconducting fault current limiter.  相似文献   

8.
Recently, expansion in the scale of power systems and development of localized power sources are leading to an increase in fault current of 500‐kV systems. In the future, it is quite likely that the fault current at the interconnection of such power systems may exceed the rated short‐time current of existing electric power facilities. As one of the solutions of this problem, a thyristor‐controlled series‐resonant‐type fault current limiter (FCL) is proposed to restrain the fault current. This paper deals with the FCL system configuration, the placement method of the FCL in power systems, the outline of the FCL's specification, and the operation method of the protective relay in the multimachine system. Finally, the effectiveness of the FCL is evaluated from the viewpoints of limiting the fault current by simulation analysis. The FCL is shown to be a useful protection device for large, high‐capacity power systems. © 1999 Scripta Technica, Electr Eng Jpn, 127(1): 11–22, 1999  相似文献   

9.
The presence of DGs in power networks tends to negatively affect relays coordination. Adding fault current limiters FCLs is one of the possible solutions to mitigate negative impacts of DGs addition on protection systems. Traditional schemes have estimated the minimum value of FCL to restore relays coordination when adding DGs without resetting of any relays. That minimum value of FCL in such case is called a critical value, where below this value the relays coordination will be lost.Nowadays, designing FCL to simultaneously achieve two conflicted objectives of good performance and low cost is considered a great challenge. The paper introduces a new scheme to determine to what extent we could decrease FCL impedance value below its critical value with re-adjusting the original settings of only one adaptive relay to get relays coordination. Decreasing FCL value below its critical value will reduce the cost especially for superconductivity FCL. The proposed scheme can determine the location of that selected relay to be an adaptive one and estimate its re-adjusted new settings to be applied when DGs are added while inserting the reduced value of FCL.Actually the proposed scheme can be applied for any networks irrespective of the number of added DGs and their capacities; while having an adaptive relay is the only requirement to implement it.The proposed approach is implemented and effectively tested on the large well-known interconnected IEEE-39 bus test system with 84 relays. Its results are compared with other approaches where, no re-adjusted relays settings are applied. A noteworthy advantage of the proposed scheme is the ability to implement a reduced FCL value than the critical value, by adjusting only one relay settings in the whole network. The proposed scheme may also be extended to re-adjust settings of more than one relay and get further reduced value of FCL. Furthermore, it is also shown that a more optimum value of the total operating time of all primary relays for near end faults is achieved when applying the proposed method rather than other traditional schemes.  相似文献   

10.
A 3000/6000V, 1000 kVA class superconducting transformer (SC-Tr) was developed for a Prospective Power Transmission Model System Integrated under Superconducting Environment (PROMISE). In this transformer, the core and superconducting windings are immersed in liquid helium and the major insulation is provided by the liquid helium. This paper describes both the design features and measured characteristics of the SC-Tr. Fundamental characteristics of the SC-Tr are obtained through no-load, short-circuit tests and quench experiments. The results of the no-load test have verified that the SC-Tr has the capability to withstand ac voltage of 3000/6000 V of 60 Hz without any partial discharge. The short-circuit tests have proved that the SC-Tr is capable of carrying ac current of 170 Arms without quench in the superconducting windings. Furthermore, in a real-load experiment with the PROMISE, electric power of 3800 V-460 kVA of 50 Hz in high-voltage side is transmitted through this SC-Tr.  相似文献   

11.
超导输电技术在提高线路输送能力、优化电网结构、降低网损、减少设备用地等方面有着明显优势,本文重点介绍了高温超导电缆及其输电技术的国内外研究现状和一些电网应用实例,总结了目前技术发展的主要特征,结合技术经济性分析展望其应用前景,围绕规模化应用探讨了今后技术研发的重点。  相似文献   

12.
Superconducting fault current limiters (SCFCLs) are expected to improve not only reliability but also stability of power systems. To introduce an SCFCL in a power system, various specifications such as trigger current level, impedance in current limiting operation, recovery time, and so on are necessary. Fault analyses point out that accuracy of the trigger current level is necessary. Therefore, an SCFCL of a transformer type with adjustable trigger current level was proposed and manufactured. Using the trial SCFCL, adjustability of the trigger current level was confirmed. It is found that the SCFCL has good limiting and recovery characteristics. In this paper, characteristics of the SCFCL are considered from a design point of view. Most of the specifications necessary for design depend on the characteristics in current limiting operation. Therefore, the characteristics of the SCFCL in current limiting operation are discussed. It is shown that this kind of SCFCL has good property for easy design, and its design principle is summarized. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 141(3): 30–38, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10054  相似文献   

13.
陈飞 《贵州电力技术》2013,(10):41-42,34
输变电中强电流它包括:研究开关电器开断能力的断流容量试验;考核电气设备通过短路电流能力的动热稳定试验,研究避雷器等设备通过雷电流性能的冲击电流试验等。  相似文献   

14.
为了消除分布电容电流对电流差动保护的影响,提出一种基于瞬时功率理论的输电线路分相电流差动保护原理。对线路两端的三相瞬时电流进行傅里叶变换,并对变换后的电流进行低通滤波后得到线路两端的三相基波有功电流分量,利用其构成差动电流保护判据。利用PSCAD软件建立500 k V输电线路仿真模型对所提差动保护原理进行仿真验证,仿真结果表明,其不受过渡电阻和分布电容电流的影响,可快速、准确地区分各种故障类型。  相似文献   

15.
引发输电技术革命的高温超导电缆   总被引:2,自引:0,他引:2  
张勇刚 《黑龙江电力》2005,27(4):241-245
阐述了高温超导电缆具有可增加电网输送容量、降低损耗、降低输电成本、提高系统运行稳定性、节约能源和保护环境等优点,论述了发展超导电力技术是21世纪电力工业的高科技储备,以提高技术储备水平,提高效率和环境保护为目标,依靠我国自己的力量,加强自主开发,引进、消化、吸收国外成熟技术,实现跨越式发展,提高我国电力工业水平。  相似文献   

16.
新型磁控开关型故障限流器参数设计及模型机研究   总被引:1,自引:0,他引:1  
基于饱和铁心型高温超导故障限流器拓扑,提出了一种适用于中高压电网的磁控开关型故障限流器结构。通过工作原理分析,论证了此拓扑结构的可行性,建立了限流器的数学模型和简化电路模型,推导出这种限流器系统的设计公式,并在此基础上研制了一台220V/50A限流器模型机。试验结果表明,该故障限流器具有快速、有效的故障电流限制作用,且具有结构简单可靠,运行控制灵活的特点。  相似文献   

17.
Using high‐temperature superconductors, a superconducting fault current limiter (SFCL) was fabricated and tested. The superconductor and a vacuum interrupter serving as a commutation switch were connected in parallel with a bypass coil. When a fault occurs and excessive current flows, the superconductor is first quenched and the current is transferred to the bypass coil because of the voltage drop of the superconductor. At the same time, since a magnetic field is generated by the current flowing in the bypass coil, the commutation switch is immediately driven by an electromagnetic repulsion plate connected to the driving rod of the vacuum interrupter (VI), and the superconductor is separated from this circuit. Using the test model, we were able to separate the superconductor from the circuit by the movement of the VI within a half current cycle and to transfer all current to the bypass coil. Since the operation of the commutation switch is included in the current limiting operation of this test model, it will be a useful circuit in the development of SFCL in the future. Moreover, since it can make the energy consumption of the superconductor small during the fault state due to the realization of a high‐speed switch with simple composition, the burden on the superconductor is reduced compared with the conventional resistive type of SFCL and it is considered that the flexibility of SFCL design is increased. Cooperation with a circuit breaker was also considered; trial calculations of the parameters and energy of operation were conducted and a discussion of the installation of the SFCL in an electric power system is presented. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 20–29, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20265  相似文献   

18.
与用于交流系统或双极直流系统的限流器不同,用于多端柔性直流系统的故障限流装置应能够在短路故障发生初期有效抑制故障电流的快速上升,避免在线路断路器动作之前换流器桥臂闭锁。针对这一性能要求提出了一种专门用于多端柔性直流电网中的新型超导故障限流器的基本结构和工作原理,并制作了原理验证样机。通过对原理验证样机开展的一系列实验,证明了设计结构与原理的可行性。实验结果也充分展示了这类限流器的功能特性,如其能充分利用铁芯的最大磁导率在短路故障发生的几个毫秒内实现最大限流感抗,从而有效抑制故障早期的短路电流上升率。此外,可以通过对超导隔离环组数量的调整,设定限流器的限流阈值,灵活适应不同直流系统的限流需求。  相似文献   

19.
超导限流器是多年以来人们在超导电力技术领域的研究焦点之一,也是被认为最有可能率先实现工业化应用的超导电力设备。本文在介绍超导限流器的基本概念、组成要素和功能特点的基础上,讨论了超导限流器设计和应用相关的一些重要技术参数和性能指标。文章还较系统地分析了电阻型和饱和铁心型两种目前发展水平较高的超导限流器的工作原理和应用情况,并比较了两者的优缺点。随着性能的进一步完善,可靠性和可用性的进一步提高,超导限流器有可能成为理想的电网短路故障限流装置。作者期待在不远的将来超导限流器会在各种电网中得到广泛的应用,并由此推动电网的深刻技术革命。  相似文献   

20.
高温超导电缆在城市地下输电系统应用的可行性研究   总被引:1,自引:1,他引:1  
大城市有可能最先采用商业化运行高温超导电缆 ,用于城市地下交流输电系统。其主要应用目标是用于地下电缆工程改造 ,利用现有排管以高温超导电缆取代现有的常导电缆 ,增加地下电缆传输容量以及采用高温超导电缆将巨大电能 (1GVA以上 )输入到城市负荷中心。采用常导电力电缆传输 1GVA以上的电能进入中心城区 ,输电电压一般要求为 5 0 0 k V。在城市中心区不可能建设 5 0 0 k V变电站。 5 0 0 k V电缆线路所需的 5 0 0 k V大长度电缆和相应附件 ,目前尚未研制开发。采用高温超导电缆将有可能降低输电电压等级 ,可以采用 2 2 0 k V高温超导电缆将 1GVA以上的电能输入到城市负荷中心 ,满足特大型城市负荷中心供电需求。采用 110 k V高温超导电缆 ,亦有可能传输 1GVA左右电能。本文通过对交流高温超导电缆系列设计计算对额定电压 35 k V、110 k V、2 2 0 k V的高温超导电缆 ,按不同传输电流 (或传输容量 ) ,以高温超导电缆的传输效率 (损耗与传输容量比 )、高温超导电缆外径限值和超导导体绕制结构限制条件 ,确定高温超导电缆适用性界定条件 ,提出城市地下输电、配电系统用高温超导电缆可行方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号