首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to investigate the effect of starch and protein interaction on rumen environment, in situ digestion, and total-tract digestibility of nutrients in weaned dairy calves between 8 and 16 wk of age. Sixteen rumen-cannulated calves were randomly divided into 4 dietary treatment groups with 4 calves fed in each treatment. The treatment diets had 2 levels of starch [18%, low starch (LS), or 38%, high starch (HS)] and 2 levels of protein [16%, low protein (LP), or 22%, high protein (HP)] on a dry matter (DM) basis in calf grower: (1) LPLS, (2) LPHS, (3) HPLS, and (4) HPHS. Calves were fed for ad libitum intake (95% assigned grower and 5% grass hay), and refusals were collected weekly. Total-tract digestibility collection and in situ digestibility procedures were performed for each calf at 11 and 15 wk. Samples for in situ digestibility, grass hay (GH), soybean hulls (SBH), wheat middlings (WM), ground corn (GrC), and soybean meal (SBM) were incubated for 9 and 24 h. There was no starch and protein interaction on total-tract digestibility of calves. Total-tract DM, neutral detergent fiber (NDF) and acid detergent fiber (ADF) digestibility, and feed efficiency were affected by both protein and starch inclusion level in calf diet. Total-tract starch digestibility was lower for LS diets. Dry matter digestibility and feed efficiency were greater in calves fed HP and HS diets compared with calves fed LP and LS diets, respectively. Fiber digestibility (NDF and ADF) was less in calves fed HS diets compared with calves fed LS diets but was greater in calves fed HP diets compared with calves fed LP diets. Level of protein did not affect in situ DM and NDF disappearance of GH, but HP increased in situ DM and NDF disappearance of SBH. High-starch diets decreased DM and NDF disappearance of both GH and SBH. At 20 h after feeding, ruminal pH was 0.51 unit higher in calves fed HPHS compared with calves fed LPHS. Total ruminal VFA and proportion of propionate was greater with HS versus LS, whereas proportion of acetate was greater with LS versus HS. The DM disappearance of SBM and WM and NDF disappearance of WM was greater for calves fed HPHS compared with calves fed LPHS at 11 wk of age. In our study, when HP was fed with HS, rumen pH, in situ digestion of WM and SBM, and total-tract digestion of DM, NDF, and ADF increased. This provides evidence for starch–protein interaction in the rumen of recently weaned dairy calves. Improvements in total-tract and in situ digestibility suggest that both protein and starch levels are important for 8- to 16-wk-old calves.  相似文献   

2.
This study examined the effects of primary growth (PG) and regrowth (RG) timothy-meadow fescue silages harvested at 2 stages of growth on feed intake, cell wall digestion and ruminal passage kinetics in lactating dairy cows. Four dairy cows equipped with rumen cannulas were used in a study designed as a 4 × 4 Latin square with 21-d periods. The experimental silages were offered ad libitum with 8 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Silages of PG were on average more digestible than RG silages. The concentration of neutral detergent fiber (NDF) and indigestible NDF (iNDF) increased and the concentration of digestible organic matter in dry matter (DM) of silages decreased with advancing maturity in PG and RG. Cows consumed more feed DM, energy, and protein and produced more milk when fed PG diets rather than RG diets. Delaying the harvest decreased DM intake and milk production in PG and RG. There were no differences between PG and RG in rumen pH, ammonia N, or total volatile fatty acid concentrations. The intake of N, omasal canal flow of total nonammonia N and microbial N, excretion of N in feces, and ruminal true digestibility of N were higher for PG than for RG diets. The efficiency of microbial N synthesis was not different between PG and RG. Intake and omasal canal flow of organic matter, NDF, and potentially digestible NDF (pdNDF) were higher in PG than in RG. Whole-diet digestibility of organic matter, NDF, or pdNDF in the rumen or in the total tract was not different between PG and RG despite the higher digestibility of PG silages measured in sheep. Rumen pool sizes of crude protein and iNDF were lower for PG diets, whereas the pool size of pdNDF was higher for PG diets than for RG diets. The rate of passage of iNDF was higher for PG diets than for RG diets, with no difference between them in rate of digestion or passage of pdNDF. The lower milk production in cows fed regrowth grass silages compared with primary growth silages could be attributed to the lower silage DM intake potential. Chemical composition of the silages, rumen fill, digestion and passage kinetics of NDF, or the ratio of protein to energy in absorbed nutrients could not explain the differences in DM intake between silages made from primary and regrowth grass.  相似文献   

3.
Twenty-four multiparous cows were used in a 10-wk randomized block design trial to evaluate the effects of feeding whole cottonseed (WCS) containing increasing concentrations of free fatty acids (FFA) in the oil on nutrient intake and digestibility, milk yield and composition, and select plasma metabolites. Two lots of WCS containing either 3 or 12% FFA were blended to provide WCS with 3, 6, 9, and 12% FFA. Cottonseeds were included in the wheat silage-based total mixed ration at 12.5% of dry matter (DM). There was no difference in intakes of DM, crude protein (CP), or neutral detergent fiber; yield of milk; or percentages of milk protein, lactose, or SNF. Milk fat percentage was lowest for the diet containing WCS with 6% FFA. Concentrations of individual milk fatty acids C6:0 decreased and C16:1 increased linearly as FFA in WCS increased. A cubic response was observed for concentrations of C8:0, C10:0, and C12:0 because of higher concentrations when diets contained WCS with 6% FFA than 3 and 12% FFA, which were higher than 9% FFA. Intake and apparent total tract digestibility of acid detergent fiber increased linearly as FFA concentration in WCS increased. Apparent NDF digestibility was highest for diets containing WCS with 3 and 6% FFA; CP digestibility was highest with WCS containing 3 and 9% FFA. Differences in milk fatty acid concentration and nutrient digestibility suggest minor changes in rumen fermentation; however, feeding WCS with up to 12% FFA did not negatively impact nutrient intake and digestibility or milk yield or composition.  相似文献   

4.
This study examined the effects of gradually replacing grass silage with whole-crop barley silage on feed intake, ruminal and total tract digestibility, and milk yield in lactating dairy cows. Four dairy cows in early lactation, equipped with rumen cannulas, were fed 4 diets over four 21-d periods. The diets consisted of 4 forage mixtures of grass silage and whole-crop barley silage supplemented with 8.9 kg/d of concentrates [dry matter (DM) basis]. The proportion of barley silage in the forage was adjusted to 0, 0.20, 0.40, and 0.60 kg/kg of DM. Ruminal nutrient metabolism was measured on the basis of digesta flow entering the omasal canal. Ammonia concentrations and volatile fatty acid profiles were determined in the rumen fluid. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Replacement of grass silage with barley silage had no effect on DM, digestible organic matter, or neutral detergent fiber (NDF) intake, but starch intake increased, whereas nitrogen and digestible NDF (dNDF) intake decreased. Increases in the proportion of barley silage linearly decreased milk yield, and the molar proportion of acetate in the rumen, and increased that of propionate, butyrate, and valerate. Decreases in milk yield due to inclusion of barley silage were attributed to decreases in diet digestibility and nutrient supply to the animal. Barley silage linearly decreased organic matter digestibility in the total tract and NDF and dNDF digestibility in the rumen and the total tract, and decreased nonammonia N flow entering the omasal canal. No significant differences between diets were noted in the digestion rate of dNDF or passage rate of indigestible NDF from the rumen. Decreases in organic matter and NDF digestibility were attributed to the higher indigestible NDF concentration of barley silage compared with that of grass silage and to the smaller pool size of dNDF in the rumen.  相似文献   

5.
Twenty Holstein cows were used in an 8-wk randomized block design study to determine the effects of replacing corn silage with ryegrass silage on nutrient intake, apparent digestion, milk yield, and milk composition. The 8-wk trial consisted of a 2-wk preliminary period followed by a 6-wk collection period. Experimental diets were formulated to provide 55.5% of the total dry matter (DM) as forage. Ryegrass silage was substituted for 0, 35, 65, and 100% of DM provided by corn silage. Dietary concentrations of neutral detergent fiber (NDF) and acid detergent fiber (ADF) increased as ryegrass silage replaced corn silage. Intake of DM and crude protein (CP) was similar for all treatments, but intake of NDF and ADF increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of DM declined linearly, whereas digestibility of CP increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of NDF and ADF was highest for the diets in which ryegrass or corn silages provided all of the forage, resulting in a quadratic response. Dry matter intake was not different among treatments. Yield of milk, fat, and protein increased as ryegrass silage replaced corn silage. No differences were observed for body weight change, body condition score, and serum urea nitrogen concentration, but serum glucose concentration increased with increasing dietary proportion of ryegrass silage. These results indicate that substituting ryegrass silage for a portion or all of the corn silage in diets fed to lactating dairy cows can improve yield of milk and components.  相似文献   

6.
《Journal of dairy science》1988,71(6):1546-1555
A series of trials was performed with sheep and goats to compare mechanically shredded with conventionally (control) harvested alfalfa hay. Shredded hay tended to contain less CP and more cell wall constituents than the control; digestibility of NDF in vitro also was increased by shredding. Intake of DM and digestibilities of NDF and ADF were increased in sheep fed shredded hay. Digestibilities of DM and CP were similar between treatments. Total tract digestibilities determined using acid detergent lignin and Yb as internal and external markers were similar to those obtained by total collection. There was no effect of shredding on rate of passage and total mean retention time of hay in the digestive tract of sheep. Ruminal pH and VFA were not altered by shredding of hay. However, production of 4% FCM and milk protein content was increased in goats fed shredded hay. Shredded hay suspended in the rumen in situ had higher particle-associated carboxymethylcellulase activity throughout the incubation period than did control hay. The enzyme activity was maximal at 6 h and declined thereafter for both hays. The pattern of particle-associated carboxymethylcellulase activity was similar to that of NDF digestion in vitro.  相似文献   

7.
The effects of increasing concentrations of dried, pelleted beet pulp substituted for high-moisture corn on digestion and ruminal digestion kinetics were evaluated using eight ruminally and duodenally cannulated multiparous Holstein cows in a duplicated 4 x 4 Latin square design with 21-d periods. Cows were 79 +/- 17 (mean +/- SD) d in milk at the beginning of the experiment. Experimental diets with 40% forage (corn silage and alfalfa silage) and 60% concentrate contained 0, 6.1, 12.1, or 24.3% beet pulp substituted for high-moisture corn on a dry matter basis. Diet concentrations of neutral detergent fiber (NDF) and starch were 24.3 and 34.6% (0% beet pulp), 26.2 and 30.5% (6% beet pulp), 28.0 and 26.5% (12% beet pulp), and 31.6 and 18.4% (24% beet pulp), respectively. Ruminal dry matter pool decreased and NDF turnover rate increased as dietary beet pulp content increased. Potentially digestible NDF was digested more extensively and at a faster rate in the rumen with increasing beet pulp, resulting in increased total tract NDF digestibility. Passage rates of potentially digestible NDF and of indigestible NDF were not affected by treatment. True ruminal digestibility of starch decreased with increasing beet pulp substitution. This was caused by a linear increase in starch passage rate, possibly because of increasing ruminal fill, and a linear decrease in digestion rate of starch in the rumen, possibly because of reduced amylolytic enzyme activity for lower-starch diets. Although true ruminal starch digestibility decreased when more beet pulp was fed, whole tract starch digestibility was not affected because of compensatory digestion of starch in the intestines. Due to more thorough digestion of fiber in diets containing more beet pulp, whole-tract digestibility of organic matter increased linearly, and intake of digestible organic matter was not affected. Partially replacing high-moisture corn with beet pulp in low-forage diets increased fiber digestibility without reducing whole-tract starch digestibility.  相似文献   

8.
Inclusion of hemicellulose extract (HE) in cattle diets have shown potential for improving fiber digestibility and production efficiency. The objective of this research was to evaluate production and digestibility effects of a HE on midlactation cows. Twelve multiparous Holstein cows (142 ± 44 d in milk, 685 ± 19 kg of body weight) including 4 with ruminal fistula were used in a 2 × 2 Latin square design with 21-d periods. Cows were fed a control (CON) diet containing 55% forage [dry matter (DM) basis, 2/3 corn silage and 1/3 alfalfa hay] or a similar diet where 1.0% of the diet DM was replaced with HE (TRT). Dry matter intake averaged 27.1 and 26.9 kg/d, for CON and TRT respectively, and was not affected by addition of extract. The percentage of milk protein (3.40 vs. 3.29%) was greater, whereas the percentage of milk fat (3.91 vs. 3.80%) tended to be greater, for cows fed the CON compared with the TRT diet. Because of numerically greater milk production (38.8 vs. 39.2 kg/d) for cows fed the TRT diet, no differences were observed in component yields other than lactose (1.86 vs. 1.94 kg/d), which tended to be greater for cows fed the TRT ration. Treatment improved neutral detergent fiber (NDF) digestibility (38.6 vs. 48.1%) for the TRT diet compared with the CON diet but did not affect apparent total-tract DM (67.8 vs. 68.5%), crude protein (67.2 vs. 67.9%), acid detergent fiber (ADF; 37.1 vs. 43.3%), or starch (92.8 vs. 92.2%) digestibility. For in situ determinations, Dacron bags containing corn silage, alfalfa hay, and either the CON or TRT ration were incubated in triplicate in the rumens of the cannulated cows at 0, 3, 6, 9, 12, 24, and 48 h on d 18 of each period. Each total mixed ration was incubated only in cows assigned to the corresponding diet. For corn silage, the rate of disappearance of NDF (1.70 vs. 4.27%) and ADF (1.79 vs. 4.66%) increased for cows fed the TRT diet. For alfalfa hay, the disappearance of fraction A of DM, NDF, and ADF decreased and fraction B of DM and NDF increased with treatment. The rate of disappearance for DM (8.03 vs. 11.04%), NDF (6.30 vs. 10.28%), and ADF (5.52 vs. 9.19%) increased for the alfalfa hay in rumens of treated cows. For the total mixed ration, the disappearance of the A fraction of NDF and ADF increased for cows fed the TRT diet. Supplementing diets of lactating dairy cows with an HE has beneficial effects on fiber degradation characteristics and provides opportunities for improving animal performance.  相似文献   

9.
Sorghum forage is an alternative crop that is more adapted to drier conditions and more resistant than corn to drought conditions. Thus, sorghum forage maximizes water utilization. The objective of this study was to evaluate sorghum silage (SS), including digestibility and fermentation parameters, in precision-fed dairy heifers. Eight Holstein heifers (13.7 ± 0.6 mo of age and 364.8 ± 17.64 kg of body weight) fitted with rumen cannulas were used in a replicated 4 × 4 Latin Square design; treatments were 4 levels of forage to concentrate ratios (85:15, 75:25, 65:35, and 55:45). Rumen contents were sampled at various times to determine pH and volatile fatty acid concentrations. Dry matter (DM) and neutral detergent fiber (NDF) in situ degradation kinetics were compared between SS and corn silage (CS) diets. Fecal total collection was used to estimate apparent total-tract digestibility. Fecal grab samples at 0, 6, 12, and 18 h after feeding were used to estimate total-tract starch digestibility. Amount of concentrate in the diet affected the time that heifers spent eating as well as rumen pH. When the concentrate proportion of the diet increased, eating time and rumen pH decreased linearly. Total volatile fatty acid concentrations were not affected by treatment, but butyrate increased as the proportion of concentrate increased in the diet. Digestibility of DM and starch were higher in diets with lower forage to concentrate ratio, but NDF, acid detergent fiber, and hemicellulose digestibility were not affected. Corn silage had greater DM and NDF digestibility than SS. Also, fractional rate of digestion was faster for CS than SS (2.78 vs. 2.42% per hour, respectively). We conclude that fecal grab samples are suitable for predicting starch digestibility in heifers given the starch levels studied. In addition, SS was an adequate alternative forage in precision-fed dairy heifers with outcomes very similar to CS-based rations.  相似文献   

10.
Sixteen cows in mid-lactation (milk yield of 23.8 ± 2.3 kg/d) were individually fed diets consisting of chopped perennial ryegrass hay, offered at 3 kg of dry matter (DM)/100 kg of body weight (BW), fed either alone or supplemented with amounts of crushed wheat ranging from 0.4 to 1.6 kg of DM/100 kg of BW (increasing at nominal intervals of 0.4 kg of DM/100 kg of BW; 5 nominal treatments in total). Three cows were allocated to each treatment except the mid-range wheat treatment, which had 4 cows. Results were analyzed by regression because the intake of the wheat by cows within treatments varied. The hay was used to reflect the characteristics of summer pastures in southeastern Australia. Feed intake and fecal output were measured to determine digestion coefficients, feeds were incubated in nylon bags in the rumen, and rumen variables were monitored. Estimates of metabolizable energy (ME) of the hay from in vivo or in vitro digestibility were also compared. The digestibility of neutral detergent fiber (NDF) was depressed linearly as the amount of crushed wheat consumed increased to 36% of DM intake. The extent to which negative associative effects on NDF digestion were associated with the hay could not be determined, as it was not possible to distinguish between the NDF from hay and that from wheat. However, acid detergent fiber (ADF) digestion also declined, suggesting that most of the response lay with the hay because ADF was negligible in the wheat. Most data indicated that effects of proportion of wheat in the diet on the utilization of consumed nutrients were small. Despite substitution of wheat for hay reducing the forage intake of cows, there was a positive linear effect on marginal milk responses (1.3 kg of energy-corrected milk/kg of DM wheat). Mean rumen fluid pH declined as the proportion of wheat in the diet increased. The lowest pH for any individual cow during a 24-h period was 5.4, and the amount of time that rumen fluid pH was <6.0 ranged from 0 to 14 h depending on the amount of wheat consumed. It was concluded that these perturbations of the rumen environment were probably sufficient to result in negative associative effects. In addition, estimates of the ME content of the hay were higher when calculated from in vitro compared with in vivo digestibility, which has implications when estimating the amount of feed required for production.  相似文献   

11.
Total mixed rations containing corn (CS), whole plant grain sorghum (WPGS), or forage sorghum (FS) silages were fed to 6 primiparous Italian Friesian cows to determine the effects on lactation performance, nutrient digestibility, and N balance. Furthermore, the relationship between in vivo total-tract neutral detergent fiber (NDF) digestibility (ttNDFD) and the ttNDFD derived by the Cornell Net Carbohydrate and Protein System (CNCPS) model was assessed. Cows were assigned to 1 of 3 diets in a replicated 3 × 3 Latin square with 28-d periods. The experimental treatment was silage type and 3 different silages were included in the diets. The diets were formulated to be iso-NDF. Accordingly, each diet was formulated to contain 41.5% CS silage, 36.7% WPGS silage, or 28.0% FS silage, on a DM basis. Starch content was balanced by adding the appropriate amount of corn meal. Separate collection of total urine and feces was performed. Dietary forages were analyzed for in vitro NDF digestibility (6 and 24h of incubation) to predict fiber digestion rate with 2 NDF pools (digestible and indigestible). Rumen digestibility of the potentially digestible NDF pool was predicted using CNCPS version 6.1, using the in vitro forage fiber digestion rate. The ttNDFD was predicted assuming that intestinal digestibility of the NDF amount escaping rumen digestion was 20%, according to the CNCPS model. Dry matter intake was decreased by approximately 1.8 kg/d in cows fed the FS diet compared with the other diets, probably for the greater particle size of FS diet. Hence, milk yield (kg/d) was lowest for FS (23.6), intermediate for WPGS (24.6), and highest for the CS diet (25.4). Milk urea N (mg/dL) was highest for FS (12.9), intermediate for WPGS (11.9), and lowest for CS (10.7) diet. In vivo ttNDFD (%) was 51.4 (CS), 48.6 (WPGS), and 54.1 (FS); this was probably due to a higher retention time of FS diet in the rumen rather than to a better quality of the FS silage, as confirmed by in situ and in vitro results. Urinary N excretion (% N intake) was highest for FS (31.8), intermediate for WPGS (29.3), and lowest for the CS (27.5) diet. The predicted ttNDFD (37.7, 36.3, and 39.5% for CS, WPGS, and FS, respectively) were lower than the in vivo results. Providing an adequate starch supplementation, whole plant grain sorghum silage can replace corn silage in dairy cows TMR. Forage sorghum silage had rumen NDF digestibility comparable to the other silages; however, it had a negative effect on dry matter intake and milk production, probably due to an inadequate effect of processing.  相似文献   

12.
Effects of full-fat crushed rapeseed (0, 1, or 2 kg/d) on rumen and total digestion, rumen biohydrogenation, and rumen microbial protein synthesis were studied in lactating cows. Rumen digestibilities (%) of DM, NDF, and cellulose were 52.1, 46.1, and 51.8, respectively, for control. Rapeseed decreased rumen and total DM digestibilities and proportion of DM digested in the rumen. Rumen digestibility of cellulose was decreased by rapeseed, but this was apparently compensated by hindgut fermentation. Dry matter, NDF, and hemicellulose digestibilities were compensated at 1 kg but not at 2 kg/d. Biohydrogenation of 18:1 fatty acids increased with increasing dietary fat, whereas that of 18:2 and 18:3 was 85% on all diets. Fatty acid digestibility was not different among diets. Microbial nitrogen in the duodenum increased from 142 g/d for control to 191 g/d for 1 and 2 kg/d. Efficiency of microbial protein synthesis (grams of microbial nitrogen per kilogram organic matter apparently digested in the rumen) was 17.3, 24.8, and 26.6 for 0, 1, and 2 kg/d. Slow release of fat from crushed rapeseed minimized negative effects on rumen metabolism; 1 to 2 kg/d of full-fat crushed rapeseed may be fed to lactating cows without detrimental metabolic effects.  相似文献   

13.
Replacement of forage with cereal byproducts may be a viable alternative for feeding dairy cows. The objective of this experiment was to evaluate total tract digestion and rumen fermentation profile when diets were formulated to contain low-forage neutral detergent fiber (NDF) (12.6% forage NDF, 18.8% total NDF), adequate NDF from forages (20% forage NDF, 24.4% total NDF) or low-forage NDF with high levels of NDF from cereal byproducts (12.7% forage NDF, 35.1% total NDF). Sodium bicarbonate (0.8% of dry matter) was factorialized over these diets. Total tract apparent digestibilities of organic matter (OM) and carbohydrates were determined in 73 Holsteins. Eight rumen-cannulated cows were used concurrently to evaluate rumen fermentation profile and in situ degradation of forages. Bicarbonate did not increase NDF or OM digestibility, but increased intake of digestible OM. Rumen fermentation parameters were determined by dietary alfalfa NDF content. Adding alfalfa NDF to the low-forage, high-starch diet increased in situ degradation of forage NDF more than adding byproduct NDF. However, increased ruminal forage NDF degradability was not reflected in greater total tract NDF digestibility. Replacement of dietary starch with NDF from byproducts decreased OM digestibility, but energy intake was similar across diets due to increased intake.  相似文献   

14.
Renewed interest exists in using grass forages to dilute the higher crude protein (CP) and lower digestible fiber present in legumes fed to lactating dairy cows. A 3 x 3 Latin square feeding study with 4-wk periods was conducted with 24 Holstein cows to compare ryegrass silage, either untreated control or macerated (intensively conditioned) before ensiling, with alfalfa silage as the sole dietary forage. Ryegrass silages averaged [dry matter (DM) basis] 18.4% CP, 50% neutral detergent fiber (NDF), and 10% indigestible acid detergent fiber (ADF) (control) and 16.6% CP, 51% NDF, and 12% indigestible ADF (macerated). Alfalfa silage was higher in CP (21.6%) and lower in NDF (44%) but higher in indigestible ADF (26%). A lower proportion of the total N in macerated ryegrass silage was present as nonprotein N than in control ryegrass and alfalfa silages. Diets were formulated to contain 41% DM from either rye-grass silage, or 51% DM from alfalfa silage, plus high moisture corn, and protein concentrates. Diets averaged 17.5% CP and 28 to 29% NDF. The shortfall in CP on ryegrass was made up by feeding 7.6% more soybean meal. Intake and milk yields were similar on control and macerated ryegrass; however, DM intake was 8.3 kg/d greater on the alfalfa diet. Moreover, feeding the alfalfa diet increased BW gain (0.48 kg/d) and yield of milk (6.1 kg/d), FCM (6.8 kg/d), fat (0.26 kg/d), protein (0.25 kg/d), lactose (0.35 kg/d), and SNF (0.65 kg/d) versus the mean of the two ryegrass diets. Both DM efficiency (milk/DM intake) and N efficiency (milk-N/N-intake) were 27% greater, and apparent digestibility was 16% greater for DM and 53% greater for NDF and ADF, on the ryegrass diets. However, apparent digestibility of digestible ADF was greater on alfalfa (96%) than on ryegrass (average = 91%). Also, dietary energy content (estimated as net energy of lactation required for maintenance, milk yield, and weight gain) per unit of digested DM was similar for all three diets. Results of this trial indicated that, relative to ryegrass silage, feeding alfalfa silage stimulated much greater feed intake, which supported greater milk production.  相似文献   

15.
Four nonlactating ruminally cannulated Holstein cows were used in a 4 x 4 Latin square experiment with 4 21-d periods to determine if the effects of dietary fat would be affected by hay particle length. Treatments consisted of two levels of tallow (0 and 5%) and two hay particle lengths (short-cut and long-cut) in a 2 x 2 factorial. Diets contained alfalfa hay, corn silage, and concentrate [1:1:2, dry matter (DM) basis] fed as a total mixed ration (TMR) once per day. Samples of the 0 and 5% tallow TMR were ground and incubated in situ in polyester bags for 24 and 48 h. Ruminal samples were taken on day 21 at 0800 h and at 2-h intervals until 1600 h. The total tract digestibilities of acid detergent fiber (ADF) and neutral detergent fiber (NDF) were not affected by tallow or by hay by tallow interactions. There was a trend for tallow to improve total tract digestibility of crude protein (CP) (70.2 vs. 74.7%). After 48 h of ruminal incubation, tallow significantly decreased the digestibilities of DM, ADF, and NDF. No hay length by tallow interactions for DM, NDF, ADF or CP digestibilities occurred after 24 or 48 h. Tallow increased concentrations of propionate and decreased concentrations of acetate and valerate and the acetate-to-propionate ratio. Total volatile fatty acids increased when tallow was added to diets with short-cut hay, which suggests that when unprotected fat is added to diets with a high level of hay, a short-cut hay length may be advantageous. This result may be due to shorter rumen retention time of feed particles, which reduces the time for fatty acids to exert antimicrobial effects. Or, it may because the increased surface area of the hay particle provides more area for microbial attachment and increased fermentation.  相似文献   

16.
Steers fitted with simple rumen and abomasal cannulas were given isoenergetic diets of approximately equal amounts of untreated (UT) barley straw and concentrates (flaked maize + tapioca) alone (BS) or with urea (BSU) or fishmeal (BSF). Similar diets were also given in which the barley straw had been treated (AT) with NaOH (BSA, BSAU and BSAF respectively). The diets were given in a 6 × 6 Latin square design. Feed components and abomasal digesta samples were analysed for neutral (NDF) and acid (ADF) detergent fibres and for monosaccharide constituents of structural polysaccharides. Hemicellulose contents were estimated as the sum of xylose + arabinose (X + A) and by the difference between ash-free NDF and ash-free ADF (NDF-ADF). Cellulose was estimated as β-linked glucose (C) and by the difference between ash-free ADF and lignin (ADF–L).103 Ruthenium and PEG were given as flow markers and flows (g24h?1) at the abomasum of carbohydrate components estimated in these ways were calculated. Approximately 98% (by wt.) of the cellulose (C) found in original feed and digesta samples was recovered in both NDF and ADF. Recoveries of hemicellulose (X + A) in NDF from UT straw, AT straw and abomasal digesta were approximately 92, 48 and 50%, respectively. The ADF fraction of feeds and digesta contained 3–6 and 10–17% of the nitrogen and xylose, respectively, present in the original samples. Mouth to abomasum digestibilities of hemicellulose (NDF– ADF) for diets BS, BSU, BSF, BSA, BSAU and BSAF were 39, 62, 67, 29, 61 and 76%, respectively. Corresponding values for cellulose (ADF–L) were 37, 34, 50, 45, 48, and 63%, respectively. The use of NDF–ADF and ADF–L as measures of hemicellulose and cellulose contents, respectively, of feeds and digesta, and the digestibility of these carbohydrate fractions between mouth and abomasum of steers are discussed.  相似文献   

17.
Four rumen cannulated Holstein cows were used in a Latin square design to examine the effect of supplemental calcium salt of palm oil fatty acids (.68 kg/d) or prilled fat (.68 or .91 kg/d) on DM intake, rumen fermentation, and nutrient digestibility. Basal diet contained 45% concentrate, 27.5% alfalfa silage, and 27.5% corn silage (DM basis), and treatments were balanced for calcium. Dry matter intake was similar among treatments. Ruminal pH, total VFA, and molar percentage acetate and propionate were not affected by fat supplementation. Feeding prilled fat decreased slightly ruminal molar percentage butyrate. Forage DM and neutral detergent fiber disappearance from ruminally suspended dacron bags did not differ due to treatment. For unknown reasons, total tract apparent digestibility of DM and NDF was lower when cows received the low amount but not the high amount of prilled fat. Milk yield and fat percentage were not significantly affected by treatment. Milk protein was maintained during prilled fat supplementation but decreased .13% during calcium salt of palm oil fatty acid supplementation. Both fat supplements appeared inert in the rumen and did not markedly affect nutrient digestion when supplemented at 3.5% or less of the total ration DM.  相似文献   

18.
Milk production, rumen fermentation, and whole-tract apparent nutrient digestibility in response to feeding 20% steam-rolled wheat with or without sodium bicarbonate were evaluated in 12 Holstein cows averaging 165 ± 16 DIM. Cows were fed 1 of 2 isoenergetic and isonitrogenous diets containing either 0 or 0.75% sodium bicarbonate on a DM basis for 21 d in a crossover design. Rumen fluid samples were obtained 18 times during the last 2 d of each period, and fecal samples were collected on 12 occasions from d 18 to 21 of each period. Removal of sodium bicarbonate from the diet did not affect DMI (21.0 kg/d), yields of milk (30.8 kg/d), or milk components (1.16, 1.01, and 1.40 kg/d for fat, protein, and lactose, respectively). Whole-tract apparent digestibility of DM, CP, ADF, and NDF did not differ between the 2 treatments (75.3, 76.6, 67.2, and 63.6%, respectively). The mean rumen pH was 6.24 and was not affected by excluding sodium bicarbonate from the diet. Rumen NH3-N (12.31 mg/dL) and lactic acid (3.63 mM) concentrations were not different, whereas total volatile fatty acids concentration tended to increase when sodium bicarbonate was present in the diet (110 vs. 116 mM). However, average concentrations of the individual volatile fatty acids, as a proportion of total volatile fatty acids, were not affected by treatment. In conclusion, dairy cow diets can include up to 20% steam-rolled wheat without the need for added sodium bicarbonate as long as the diets are formulated to meet the fiber requirements of the cow.  相似文献   

19.
Nutrient content of whole cottonseed   总被引:5,自引:0,他引:5  
The objective of this study was to determine if the nutrient and gossypol contents and in vitro digestibility of 3 types of genetically modified whole cottonseed differed from traditional whole cottonseed. Samples of seed from traditional (no genetic modifications) and genetically modified varieties of cotton grown in 1999 and 2000 were analyzed. Genetic modifications included the insertion of genes to protect cotton from insect pests (Bt), and damage from glyphosate herbicides (RR), and from both (Bt/RR). Year effects were significant for in vitro dry matter (DM) digestibility, gossypol, DM, crude protein (CP), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF), and ash. Higher rainfall resulted in higher CP, fat, and ash and lower NDF and gossypol. There were no differences among seed types for ground or whole seed digestibility, DM, CP, fat, NDF, ADF, ash, lignin, net energy for lactation, amino acids, total fatty acids, or seed index. Overall, the nutrient content and digestibility of varieties of genetically modified seed were similar to that of varieties of traditional whole cottonseed.  相似文献   

20.
The effects of digestibility of corn silage neutral detergent fiber (NDF) and dietary NDF content on ruminal digestion kinetics, site of nutrient digestion, and microbial N production efficiency were evaluated with eight multiparous high producing dairy cows in a duplicated 4 x 4 Latin square design with 21-d periods. Experimental diets contained corn silage from a brown midrib (bm3) hybrid or its isogenic normal control at two concentrations of dietary NDF (29 and 38%). The NDF digestibility estimated by a 30-h in vitro fermentation was higher for bm3 corn silage by 9.4 units (55.9 vs. 46.5%). Neither ruminal nor total tract NDF digestibility was affected by corn silage treatment. The bm3 corn silage diet decreased starch digestibility in the rumen and in the total tract, but increased postruminal starch digestibility compared with control diet. The bm3 corn silage diets increased microbial N flow to the duodenum and tended to decrease ruminal ammonia concentration. Microbial efficiency was greater for cows fed bm3 corn silage in spite of lower ruminal pH. Higher efficiency of microbial nitrogen production might be attributed to faster passage rate of NDF for cows fed bm3 corn silage compared with those fed control corn silage. Higher in vitro NDF digestibility might predict enhanced NDF fragility and ease of NDF hydrolysis in vivo. Enhanced in vitro NDF digestibility does not necessarily result in increased NDF digestibility either in the rumen or in the total tract, but possibly increases rate of passage and DMI, improving efficiency of microbial N production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号