首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
《分离科学与技术》2012,47(14):1905-1913
Abstract

Composite membranes for air separation were prepared from a liquid crystal DYC-modified ethyl cellulose (EC) thin film ranging in thickness from 1 to 7 μm and a porous polyethersulfone support with a thickness of 120 μm. The effects of DYC/EC (9/91) solution concentration, water, and operating parameters such as temperature, pressure, and time on the air-separation properties of the composite membranes were examined by a constant pressure—variable volume method. The permeate flux and oxygen concentration of the oxygen-enriched air (OEA) through the membranes increase significantly with increasing operating pressure difference. With decreasing casting solution concentration, or with increasing humidity around the membranes or operating temperature, the OEA flux increases greatly while the oxygen concentration sometimes decrease slightly. An increase in the operating time leads to an OEA flux decline, but the oxygen concentration rose when the operating time was varied for 70 hours. However, a further increase of the operating time from 70 to 500 hours does not lead to further changes of the OEA flux and oxygen concentrations. A thin-film composite membrane exhibits a slightly lower oxygen concentration accompanied by a very significant enhancement in the OEA flux and membrane stability compared to a homogeneous dense membrane of the same materials.  相似文献   

2.
Multilayer composite membranes are fabricated from six types of thin films as selective layers, an ethyl cellulose (EC) thin film as a flexible spacer, and poly(ether sulfone) (PES) with 15–45 nm pore size or 100–120 μm thickness as a porous support layer. The effects of the thin‐film type and its layer number, operating temperature, and transmembrane pressure difference, as well as the operational time on the actual air‐separation properties through the composite membranes, are investigated by a constant pressure‐variable volume method. The results show that a pure polystyrene thin‐film composite membrane exhibits poor actual air‐separation performance due to its brittleness, although it has a higher ideal oxygen over nitrogen separation factor. The oxygen‐enrichment air (OEA) flux through all of the composite membranes tested increases significantly with increasing operating temperature and pressure difference. The oxygen concentration in the OEA increases slightly with an increase in operating temperature, and the oxygen concentration through the polystyrene/cholesteryl oleyl carbonate blend, top layer composite membrane exhibits the maximal value. As the transmembrane pressure difference increases, the oxygen concentration in the OEA also exhibits the maximal value. The maximum oxygen concentration can reach 39.1%, which is achieved by the multilayer composite membrane consisting of a polystyrene/cholesteryl oleyl carbonate (95/5) monolayer, an EC single flexible spacer, and a PES support at 35°C and a transmembrane pressure difference of 550 kPa. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2396–2403, 2000  相似文献   

3.
Bilayer composite membranes suitable for separating air, consisting of poly(4-methylpentene-1) (PMP) thin film as a selective top layer, an ethylcellulose–heptycellulose (ECHC) blend thin film as a selective sublayer, and polysulfone as a porous support, were investigated using a constant pressure–variable volume method. By varying operating temperature, pressure, time, as well as stage cut, the membranes were characterized for their oxygen enriched air (OEA) flux and oxygen concentration in the OEA permeated in a single step. The results show that both the OEA flux and oxygen concentration through the membranes increase with increasing operating pressure. With the increase of operating temperature, the OEA flux increases largely but the oxygen concentration decreases slightly. The oxygen concentration also decreases slightly with the stage cut. On the contrary, the OEA flux decreases and oxygen concentration increases slightly with operating time. It is found that a PMP thin film plays an important role in enhancing the air-separation capability of the membrane. The PMP/ECHC bilayer thin-film composite membrane could enrich the OEA containing 43.6% oxygen at the OEA flux of 5.06 × 10?4 cm3 (STP)/s cm2 with a good performance stability. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Multilayer composite membranes were made of poly(4-methylpentene-1) (PMP), an ethyl cellulose (EC) + heptyl cellulose (HC) blend, polycarbonate (PC), polysulfone, poly(2,6-dimethylphenylene oxide), cellulose triacetate ultrathin films as selective layers, and polysulfone, poly(ether sulfone), and poly(sulfone amide) ultrafiltration membranes with a 10–45 nm pore size and 100–120 μm thickness as porous support layers. The effects of the ultrathin-film type and its casting solution concentration, operating pressure, temperature, as well as time on the oxygen-enriched air (OEA) flux and oxygen concentration in the OEA permeated in a single step through the composite membranes were investigated using a constant pressure—variable volume method. The OEA flux increases significantly with an increasing transmembrane pressure difference and operating temperature. The oxygen concentration in the OEA also increases with an increasing pressure difference but decreases slightly with an increasing operating temperature. In long-term tests, the oxygen-enrichment properties were maintained almost constant for as long as 170 h. The composite membranes consisting of the bilayer ultrathin film cast from a more dilute solution (0.11–0.26 wt %) on the porous support with a smaller pore size combine a higher oxygen-enriching ability and a higher stability than do those of monolayer and tetralayer ultrathin films. The maximum OEA flux and oxygen concentration produced at 20–75°C and a 500 kPa transmembrane pressure difference in a single pass across the PMP/98EC + 2HC bilayer and PC bilayer ultrathin-film composite membranes are 3.1 × 10−3 cm3(STP)/s cm2 and 50%, respectively. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2139–2147, 1997  相似文献   

5.
Several multilayer thin‐film composite membranes were fabricated of ethylcellulose (EC) and poly(aniline‐co‐ortho‐toluidine) or poly(ortho‐toluidine) blend as selective thin films and three ultrafiltration membranes with a 10‐ to 45‐nm pore size and 100‐ to 200‐μm thickness as porous supports. The relationships between the actual air‐separation performance through the composite membranes and layer number, composition, casting solution concentration of the thin selective film are discussed. The oxygen‐enriched air (OEA) flux through the composite membranes increases steadily with increasing operational temperature and pressure. The oxygen concentration enriched by the composite membranes appears to decrease with operating temperature, but increases with operating pressure. The actual air‐separation property through the composite membranes seems to remain nearly constant for at least 320 days. The respective highest OEA flux, oxygen flux, and oxygen concentration, respectively, were found to be 4.78 × 10−5 cm3 (STP)/s · cm2, 2.2 × 10−5 cm3 (STP)/s · cm2, and 46% across EC/poly(o‐toluidine) (80/20) blend monolayer thin‐film composite membranes in a single step at 20°C and 650 kPa operating pressure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 458–463, 2000  相似文献   

6.
Several multilayer thin low‐density polyethylene (LDPE) films were fabricated by blown thin film having a thickness of 7 μm and an area of 130 cm2. They were characterized for their oxygen‐enrichment performance from air by a constant pressure–variable volume method in a round permeate cell with an effective area of 73.9 cm2. The relationship between oxygen‐enrichment properties, including oxygen‐enriched air (OEA) flux, oxygen concentration, permeability coefficients of OEA, oxygen, nitrogen, as well as separation factor through the multilayer LDPE films, and operating parameters, including transfilm pressure difference, retentate/permeate flux ratio, temperature, as well as layer number, are all discussed in detail. It is found that all of the preceding oxygen‐enrichment parameters increase continuously with an increase of transfilm pressure difference from 0.1 to 0.65 MPa, especially for the trilayer and tetralayer LDPE films. The oxygen concentration and separation factor appear to rapidly increase within the retentate/permeate flux ratio below 200, and then become unchangeable beyond that, whereas the OEA flux and the permeability coefficients of OEA, oxygen, and nitrogen seem to remain nearly constant within the whole retentate/permeate flux ratio investigated, especially for the monolayer and bilayer LDPE films. The selectivity becomes inferior, whereas the permeability becomes superior, as the operating temperature increases from 23 to 31°C. The highest oxygen concentration was found to be 44.8% for monolayer LDPE film in a single step with air containing oxygen of 20.9% as a feed gas and operating pressure of 0.5 MPa at a retentate/permeate flux ratio of 340 and 23°C. The results demonstrate a possibility to prepare an oxygen‐enriching membrane directly from air, based on the easily obtained thin LDPE films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3013–3021, 2002; DOI 10.1002/app.2331  相似文献   

7.
Blend membranes of 2,2′‐bipyridine (2BP) or 4,4′‐bipyridine (4BP) with ethyl cellulose (EC) containing no more than 25 wt % BP are prepared and evaluated for their oxygen enrichment by both the constant pressure–variable volume method and the constant volume–variable pressure method. The actual air‐separation ability through the 2BP/EC blend membrane containing 1.5–7 wt % 2BP are enhanced while the permeated flux is slightly increased in comparison with the virgin EC membrane. Among the 2BP/EC blend membranes examined, the 2BP/EC blend membrane containing 3 wt % 2BP offers the best oxygen/nitrogen permselectivity and yields the highest oxygen concentration of 42.7% at the transmembrane pressure difference of 0.75 MPa and 25°C. Like other homogeneous dense membranes, the BP/EC blend membrane demonstrates strong dependencies on the transmembrane pressure difference, retentate/permeate flux ratio, and operating temperature. It possesses higher activation energy of oxygen and nitrogen permeation than those of the virgin EC membrane in the tested temperature range of 9.7–60°C. The CO2 over CH4 permselectivity through EC membranes can be improved by introducing 4BP, and the ideal oxygen over nitrogen separation factor through the 4BP/EC (10/90) membrane increases 16% at the upstream pressure of 10 bar compared with the virgin EC membrane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1371–1381, 2003  相似文献   

8.
《分离科学与技术》2012,47(3):449-460
Abstract

Air separation properties and stabilities of four blend membranes, 1–30-μ.m thick, prepared from ethyl cellulose (EC) with a small amount of nematic and cholesteric liquid crystals, such as p-heptyl-p'-cyanobiphenyl (7CB), p-pentylphenol-p'-methoxybenzoate (5PMB), benzoate-containing liquid crystal mixture (DYC), and cholesteryl oleyl carbonate (COC), were investigated by the variable volume method. To provide more significant information guiding membrane-based air separation, air was directly used as the test gas. The membranes showed both higher oxygen permeability, P O2 , and oxygen over nitrogen separation factor, P O2 /P N2 , in the temperature range of the liquid crystalline phase. Oxygen-enriched air (OEA) flux, Q OEA, and oxygen concentration. Y O2 increased simultaneously with increasing transmembrane pressure difference. Stability studies revealed that the efficiencies of concentrating oxygen using 1–7-μm thick DYC/EC (9/91) membranes laminated to porous polyethersulfone membranes were almost constant for a 120–510-hour operating time. The membrane possessed a Q OEA of 9.0 × 10?4 cm3(STP)/s.cm2 and YO2 of 40% at 30°C and 0.41 MPa for a single-stage process. The results suggest that the membranes could be used effectively in enriching oxygen from air.  相似文献   

9.
The blend polyethersulfone (PES)/cellulose acetate (CA) flat‐sheet microporous membranes were prepared by reverse thermally induced phase separation (RTIPS) process. The effects of CA content and coagulation bath temperature on membrane structures and properties were investigated in terms of membrane morphology, water contact angle, permeation performance, and mechanical properties. The cloud point results indicated that the cloud point decreased with the increasing content of CA. When the coagulation bath temperature was lower than the cloud point, the membrane formation process underwent nonsolvent induced phase separation (NIPS) process and dense skin layer and finger‐like structure were formed in membranes. These membranes had lower pure water flux and poor mechanical properties. But when the coagulation bath temperature was higher than the cloud point, the membrane formation process underwent RTIPS process. The porous top surface as well as porous cross‐section of the membranes were formed. Therefore, high pure water flux and good mechanical properties were obtained. The contact angles results indicated that the hydrophilicity of the prepared membranes improved obviously with the addition of CA. When the content of CA was 0.5 wt% and the membrane formation temperature was 323K, the PES/CA microporous membrane which was prepared via the RTIPS process displayed a optimal permeability of the pure water flux of 816 L m?2 h?1 and the BSA rejection rate of 49.5%, which showed an increase of 48.9% and 23.6% than that of pure PES membrane, respectively. Moreover, the mechanical strengths of the membranes obtained by RTIPS process were better than those membranes prepared by NIPS process. POLYM. ENG. SCI., 58:180–191, 2018. © 2017 Society of Plastics Engineers  相似文献   

10.
Polymer blending as a modification technique is a useful approach for augmenting the gas‐separation and permeation properties of polymeric membranes. Polysulfone (PSF)/poly(ether sulfone) (PES) blend membranes with different blend ratios were synthesized by conventional solution casting and solvent evaporation technique. The synthesized membranes were characterized for miscibility, morphology, thermal stability, and spectral properties by differential scanning calorimetry (DSC), field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared (FTIR) spectroscopy, respectively. The permeation of pure CO2 and CH4 gases was recorded at a feed pressure of 2–10 bar. The polymer blends were miscible in all of the compositions, as shown by DSC analysis, and molecular interaction between the two polymers was observed by FTIR analysis. The thermal stability of the blend membranes was found to be an additive property and a function of the blend composition. The morphology of the blend membranes was dense and homogeneous with no phase separation. Gas‐permeability studies revealed that the ideal selectivity was improved by 65% with the addition of the PES polymer in the PSF matrix. The synthesized PSF/PES blend membranes provided an optimized performance with a good combination of permeability, selectivity and thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42946.  相似文献   

11.
J. Sikder 《Desalination》2009,249(2):802-2035
This work is focused on synthesis and characterization of a polymer blend microfiltration membrane for separation of microbial cells from lactic acid fermentation broth in a continuous process. The membranes were prepared by blending hydrophilic cellulose diacetate (CA) polymer with hydrophobic polysulfone (PSF) polymer in wet phase inversion method. Polymers were blended in N-methyl-2-pyrrolidone (NMP) solvent (70 wt.%) where polyethylene glycol was added as a pore former. The membranes were characterized in terms of morphology, porosity, flux and microbial separation capability. The best prepared membrane with PSF/CA weight ratio of 25/75 yielded a pure water flux of 1830 LMH (liter/m2 h) and a fermentation broth flux of 1430 LMH at around 1.5 bar TMP (trans-membrane pressure). The membrane was successful in complete retention of microbial cells from the broth in a continuous crossflow membrane module integrated with the fermentor.  相似文献   

12.
The air separation through triheptyl cellulose (THC)/ethyl cellulose (EC) blend membranes containing no more than 20 wt % THC at the temperature range from 298 to 358 K was investigated using a variable volume method. The air-separation ability for the THC/EC membranes were greater than that for the THC-free pure EC membrane. P for the THC/EC membranes was between 1.06–8.89 × 10?9 cm3 (STP) cm/cm2 s cmHg and P/P 3.04–3.66. The THC/EC membrane showed a unique trend in its P/P ? P relationship, i.e., the magnitude of P/P increased simultaneously with that of P. The THC/EC membrane yielded a maximum oxygen concentration in the oxygen-enriched air (OEA) of 39.5% at an OEA flux of 6.99 × 10?4 cm3 (STP)/s cm2 for a pressure difference of 0.43 MPa at 358 K. After 300 h of measurement at 0.40 MPa and 313 K, the efficiency of the concentrating oxygen was almost constant. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
In the present study, a simple, inexpensive, nontoxic, and environmentally friendly polyethylene glycol (PEG) polymer was used to enhance the hydrophilicity of the forward osmosis (FO) membrane using various PEG concentrations as a pore forming agent in the casting solution of polyethersulfone/polysulfone (PES/PSF) blend membranes. A nonwoven PES/PSF FO blend membrane was fabricated via the immersion precipitation phase inversion technique. The membrane dope solution was cast on polyethylene terephthalate (PET) nonwoven fabric. The results revealed that PEG is a pore forming agent and that adding PEG promotes membrane hydrophilicity. The membrane with 1 wt% PEG (PEG1) had about 27% lower contact angle than the pristine blend membrane. The PEG1 membrane has less tortuosity (which reduces from 3.4–2.73), resulting in a smaller structure parameter (S value) of 277 μm, due to the presence of open pores on the bottom surface structure, which results in diminished ICP. Using 1 M NaCl as the draw solution and distilled water as the feed solution, the PEG1 membrane exhibited higher water flux (136 L m−2 h−1) and lower reverse salt flux (1.94 g m−2 h−1). Also, the selectivity of the membrane, specific reverse salt flux, (Js/Jw) showed lower values (0.014 g/L). Actually, the PEG1 membrane has a 34.6% higher water flux than the commercial nonwoven-cellulose triacetate (NW-CTA) membrane. By means of varied concentrations of NaCl salt solution (0.6, 1, 1.5, and 2 M), the membrane with 1 wt% PEG showed improved FO separation performance with permeate water fluxes of 108, 136, 142, and 163 L m−2 h−1. In this work, we extend a promising gate for designing fast water flux PES/PSF/PEG FO blend membranes for water desalination.  相似文献   

14.
Polyphenylene sulfide (PPS) porous membranes were successfully prepared from miscible blends of PPS and polyethersulfone (PES) via thermally induced phase separation followed by subsequent extraction of the PES diluent. The morphologies, crystalline structures, mechanical properties, pore structures and permeate fluxes of the PPS porous membranes obtained from different phase separation processes were characterized and are discussed. During the phase separation in the heating process, PPS and PES mainly underwent liquid–liquid phase separation, and then a nonhomogeneous porous structure with a mean pore size of 100 μm and a honeycomb‐like internal structure formed on the membrane surface. The phase separation of PPS/PES occurring in the cooling process was easier to control and the related pore diameter distribution was more regular. In the process of direct annealing, as the phase separation temperature decreased, the pore size distribution became more homogeneous and the mean diameter of the pores also decreased gradually. When the phase separation temperature decreased to 200 °C, PPS membranes with a network structure and a uniform as well as well‐interconnected porous structure could be obtained. In addition, the maximum permeation flux reached 1718.03 L m–2 h–1 when the phase separation temperature was 230 °C. The most probable pore diameter was 6.665 nm, and the permeate flux of this membrane was 2.00 L m–2 h–1; its tensile strength was 17.07 MPa. Finally, these PPS porous membranes with controllable pore structure as well as size can be widely used in the chemical industry and energy field for liquid purification. © 2020 Society of Chemical Industry  相似文献   

15.
The newly developed core-shell structured molten oxide membranes with fast combined diffusion-bubbling oxygen mass transfer and theoretically infinite selectivity are of technological interest because of their high separation efficiency. In this article, a core-shell structured molten V2O5–Cu2O- based diffusion-bubbling membrane was prepared by one-step thermal treatment of initial CuO–25 wt.% Cu5V2O10 ceramic composite in a chemical field (under an oxygen partial pressure difference across the composite) above copper vanadate peritectic transformation temperature (816°C). Oxygen fluxes through the membrane were measured at 830°C, using either gas mixtures (O2 + N2) with different oxygen concentrations or air as feed gas at the shell of the membrane and helium (He) as sweep gas. Oxygen flux through the membrane with a shell thickness of 0.15–0.61 mm was 3.8·10–8–1.4·10–7 mol/cm2/s under an oxygen partial pressure difference of 0.1 –0.75 atm, respectively. The effect of oxygen partial pressure on the thickness of the membrane shell is found. The relationship between membrane shell thickness, oxygen partial pressure difference across the membrane, and oxygen permeation flux through the membrane is established. Oxygen permeation flux through the dual-phase MIEC membrane shell is described in terms of the diffusion model. Oxygen permeation flux through the membrane core is described both within the framework of the stationary model and nonstationary model for uniform (the membrane thickness is much larger than the characteristic distance of bubble dynamic relaxation) and accelerated (the membrane thickness is comparable to the characteristic distance of bubble dynamic relaxation) bubble motion in a viscous oxide melt, respectively.  相似文献   

16.
Asymmetric micro porous membranes have been prepared successfully from blending of cellulose acetate (CA) and polyethersulfone (PES) by the phase inversion method with N, N-dimethylformamide (DMF) as solvent. Two additives were selected in this study, including polyethylene glycol 600 (PEG 600) and polyvinylpyrrolidone (PVP). The effects of concentration of additives on CA/PES blend membrane performance and cross-section morphology were investigated in detail. CA/PES membranes were compared with CA/PES/PEG and CA/PES/PVP membranes in the performance such as pure water flux, membrane resistance, porosity and cross-section morphology. The resulting blend membranes were also carried out the rejection and permeate flux of Egg Albumin (EA) proteins with molecular weight of 45 Da. The membranes thus obtained with an additive concentration of 5 wt% of both PEG and PVP exhibited superior properties than the 80/20% blend composition of CA and PES membranes. The permeate flux of protein was increased from 44 to 134 lm2 h with increase in concentrations of both PVP and PEG in 80/20% blend composition of CA and PES membranes. Cross-sectional images from scanning electron microscopy showed larger macropores in the bottom layer of the membranes with increasing additives content. Observations from scanning electron microscopy provided qualitative evidence for the trends obtained for permeability and porosity results.  相似文献   

17.
Blend PES/CA hydrophilic membranes were prepared via a phase-inversion process for oil–water separation. PEG-400 was introduced into the polymer solution in order to enhance phase-inversion and produce high permeability membranes. A gas permeation test was conducted to estimate mean pore size and surface porosity of the membranes. The membranes were characterized in terms of morphology, overall porosity, water contact angle, water flux and hydraulic resistance. A cross-flow separation system was used to evaluate oil–water separation performance of the membranes. From FESEM examination, the prepared PES/CA membrane presented thinner outer skin layer, higher surface porosity with larger pore sizes. The outer surface water contact angle of the prepared membrane significantly decreased when CA was added into the polymer solution. The higher water flux of the PES/CA membrane was related to the higher hydrophilicity and larger pore sizes of the membrane. From oil–water separation test, the PES/CA membrane showed stable oil rejection of 88 % and water flux of 27 l/m2 s after 150 min of the operation. In conclusion, by controlling fabrication parameters a developed membrane structure with high hydrophilicity, high surface porosity and low resistance can be achieved to improve oil rejection and water productivity.  相似文献   

18.
Barium-chromium oxide (BaCrOx) coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) tubular membranes were successfully prepared and evaluated for oxygen separation applications under high pressure–temperature conditions. The oxygen permeation flux was measured in accordance with the temperature, air pressure, and retentate flow rate, ranging from 750–950°C, 3–9 atm, and 200–1000 mL/min, respectively. The permeation testing on the BaCrOx coated BSCF tubular membranes showed that the oxygen flux increased as the temperature, pressure, and retentate flow rate increased. The oxygen permeation flux was 5.7 mL/(min cm2) with temperature, pressure, and retentate flow rate of 900°C, 9 atm, and 1000 mL/min, respectively. The temperature dependence of the oxygen permeation process is further investigated, and the Arrhenius pre-exponential factor, as well as the apparent activation energy, is determined.  相似文献   

19.
In this work, an in situ reduction method was used to prepare nanosilver‐modified polyethersulfone (PES‐Ag) ultrafiltration membranes by mixing up the reducing agent ethylene glycol and the protective agent polyvinylpyrrolidone to reduce AgNO3 in the casting solution. The effects of coagulation bath temperature (CBT) on the separation performances, antifouling property, tensile strength, and stability of the nanosilver particles were researched. The results indicated that when the PES‐Ag membranes were prepared in 40°C coagulation bath, the loss rate of nanosilver particles during preparation was minimum, only 18.5%. With the CBT increasing from 20 to 60°C, the water flux of the PES and PES‐Ag membranes increased, whereas the rejection rate decreased. The largest flux reached 471 L·m?2·h?1 for PES‐Ag membranes prepared at 60°C and the rejection was over 90%. The results of contact angle and flux recovery ratio showed that PES‐Ag membranes had better hydrophilicity and antifouling property. Furthermore, the PES‐Ag membranes could inhibit Escherichia coli from growing. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
In order to reduce surface aggregation and enhance the performance of PES membranes, a hydrophilic PES/TEOS HF membrane was developed for the treatment of wastewater containing oil. PES/TEOS was prepared via a sol-gel self assembly and dry–wet spinning method. Silicon dioxide sol was prepared from a mixture of tetraethoxysilane, ethanol, water, and acetic acid (acting as the catalyst). HF hybrid membranes were produced from dope solutions containing polyethersulfone, polyethylene glycol, silicon sol, and NMP. The membranes were characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), porosity, fourier transform infrared spectroscopy (FTIR), and contact angle measurements. The composite membranes were successfully used to treat wastewater containing oil and their separation performance were evaluated. The PES/TEOS-2 membrane displayed the best performance, with a permeate flux of 90.937 L/m2 h and an oil retention of 99.98%. In addition, this membrane showed a higher pure water flux of 102.43 L/m2 h as compared to PES-0 and PES/SiO2–1 membranes (87.347 L/m2 h and 91.949 L/m2 h, respectively). The PES/TEOS-2 membrane also presented enhanced antifouling behavior with a FRR and a RFR of 93.33% and 11.22%, respectively. In addition, this membrane displayed excellent long-term recycling properties, making it a desirable candidate for oily wastewater separation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号