首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A feasibility study of pultrusion of fiber-reinforced polyurethane/furfuryl alcohol (PU/FA) interpenetrating polymer/network IPN composites has been made. From the viscosity study, it was found that the pot life of the PU/FA IPN prepolymers increased with PU content and showed high reactivity at elevated temperature. It was confirmed from the morphological study that the wetting of fibers by the PU/FA IPN resins was improved with PU content. The appearance of the tensile failure surfaces of the pultruded glass fiber-reinforced PU/FA IPN composites showed “hackle patterns” for PU contents below 15 phr. The mechanical property study shows that the tensile strength of pultruded PU/FA IPN composites is the highest when the PU content is 5 phr. However, the flexural strength, flexural modulus and HDT decreased with PU content. The mechanical properties of various fiber-reinforced (glass, carbon, and Kevlar 49 aramid fiber) pultruded PU/FA IPN composites increased with fiber volume content.  相似文献   

2.
Simultaneous full‐interpenetrating polymer networks (full‐IPNs) based on blocked polyurethane (PU) and vinyl ester (VE) have been prepared. The static and dynamic properties of these IPNs have been examined. Results show that the tensile strength and flexural strength of IPNs increased with blocked PU content to a maximum value at 7.5 wt % PU content and then decreased. The tensile modulus, flexural modulus, and hardness of IPNs decreased with increasing blocked PU content. The impact strength of IPNs increased with increasing blocked PU content. The tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (kaolin) content to a maximum value at 20 to 25 phr filler content and then decreased. The higher the filler content, the greater the hardness, and the lower the impact strength of IPNs. The tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs increased with increasing VE initiator content. The dynamic technique was used to determined the damping behavior across a temperature range. Results show that the glass transition temperature (Tg) of IPNs are shifted inwardly compared with pure PU and VE, which indicated that the blocked PU–VE IPNs showed excellent compatible. Meanwhile, the glass transition temperature was shifted to a higher temperature with increased filler content. The dynamic storage modulus (E′) of IPNs increased with increasing VE and filler content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1977–1985, 1999  相似文献   

3.
Interpenetrating polymer networks (IPNs) based on blocked polyurethane (BPU)/phenolic (PF) were prepared using simultaneous polymerization method. The IPN was prepared from BPU prepolymer with m‐xylylenediamine as the chain extender and PF prepolymer using p‐toluene sulfonic acid as a catalyst. From Fourier transform infrared spectra analysis, it was found that the major reactions in the BPU/PF IPN system are the polymerization of BPU/MXDA and the self‐polymerization of PF. It was confirmed from scanning electron micrography that the BPU/PF IPN compatibility of the networks was improved, and the system was heterogeneous and more than one phase existed in the IPN. The tensile properties, flexural properties, impact, and hardness of the prepared IPN were studied. To obtain the best mechanical properties of IPN materials, the filler added in IPN materials has to be investigated. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

4.
The mechanical properties of blocked polyurethane(PU)/epoxy interpenetrating polymer networks (IPNs) were studied by means of their static and damping properties. The studies of static mechanical properties of IPNs are based on tensile properties, flexural properties, hardness, and impact method. Results show that the tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs decreased with increase in blocked PU content. The impact strength of IPNs increased with increase in blocked PU content. It shows that the tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (CaCO3) content to a maximum value at 5, 10, 20, and 25 phr, respectively, and then decreased. The higher the filler content, the greater the hardness of IPNs and the lower the notched Izod impact strength of IPNs. The glass transition temperatures (Tg) of IPNs were shifted inwardly compared with those of blocked PU and epoxy, which indicated that the blocked PU/epoxy IPNs showed excellent compatibility. Meanwhile, the Tg was shifted to a higher temperature with increasing filler (CaCO3) content. The dynamic storage modulus (E′) of IPNs increased with increase in epoxy and filler content. The higher the blocked PU content, the greater the swelling ratio of IPNs and the lower the density of IPNs. The higher the filler (CaCO3) content, the greater the density of IPNs, and the lower the swelling ratio of IPNs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1826–1832, 2006  相似文献   

5.
Tricomponent interpenetrating polymer network (IPN) systems involving castor oil, toluenediisocyanate (TDI), acrylonitrile (AN), ethylene glycol diacrylate (EGDA), and general‐purpose unsaturated polyester resin (GPR) were prepared with various compositions. The structures of the IPNs at various stages were confirmed using FTIR. The thermal stability of the IPNs was studied using TGA, which indicated that the polyurethane/polyacrylonitrile/GPR (PU/PAN/GPR) IPN underwent single‐stage decomposition, showing perfect compatibility at the IPN composition of 10 : 90 (PU/PAN : GPR). The mechanical properties such as tensile, flexural, impact, and hardness for the IPNs with various compositions were determined. It was found that the tensile strength of the GPR matrix was decreased and flexural and impact strengths were increased upon incorporating PU/PAN networks. The swelling properties in water and toluene were also studied. The morphology of the IPNs was studied using SEM. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 817–829, 2004  相似文献   

6.
Graft-interpenetrating polymer networks (graft-IPNs) of polyurethane (PU) and bismaleimide (BMI) were prepared by using a simultaneous polymerization technique. The effects of the PU molecular weight and the amounts of the PU on the mechanical properties, density, and morphology of the IPNs are discussed. The graft-IPNs exhibited superior ultimate tensile strength and large improvement in flexural strength when the short soft segments of the PU were introduced. Better thermal stability of the IPNs was shown by increasing the BMI content. The heterogeneous and phase-separated characteristics were found from the results of dynamic mechanical analysis. The maximum density was achieved by the graft-IPNs structure when 33.3 wt % of PU with short soft chain length was added. The graft-IPNs also showed heterogenous morphology in the micrographs when a large amount of PU was incorporated. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Interpenetrating polymer networks (IPNs) of glycerol modified castor oil polyurethane (GC‐PU) and poly(2‐ethoxyethyl methacrylate) poly(2‐EOEMA) were synthesized using benzoyl peroxide as initiator and ethylene glycol dimethacrylate (EGDM) as crosslinker. GC‐PU/poly (2‐EOEMA) interpenetrating polymer networks were obtained by transfer molding. The novel GC‐PU/poly (2‐EOEMA) IPNs are found to be tough films. These IPNs are characterized in terms of their resistance to chemical reagents thermal behavior (DSC, TGA) and mechanical behavior, including tensile strength, Young's modulus, shore A hardness, and elongation. The morphological behavior was studied by scanning electron microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1029–1034, 2004  相似文献   

8.
The interpenetrating polymer networks (IPNs) of polyurethane (PU) and the mixture of bismaleimide (BMI) and the 2-hydroxylethyl methacrylate (HEMA)-terminated PU prepolymer (HPU) were prepared by using a simultaneous polymerization technique. The effects of the PU molecular weight and the amounts of the PU on the mechanical properties, thermal stability, and dynamic mechanical properties are discussed. The IPNs exhibited superior ultimate tensile strength as the polyol of PU and HPU in the IPNs is based on poly(tetramethylene oxide) (PTMO) glycol of molecular weight 1000 (PTMO1000). Izod impact property of the IPNs indicated that the PU(PTMO1000)/BMI-HPU(PTMO1000) IPNs had much more significant improvement than that of the PU(PTM02000)/BMI-HPU(PTMO2000) IPNs. Better thermal stability was shown by the IPNs as compared with the components of the networks, i.e. PU or BMI-HPU copolymers. The dynamic mechanical analysis (DMA) indicates that these IPNs show various shifts in the loss moduli(E) at the high and low temperature transition peaks for various molecular weight of the polyol employed in the PU. Better compatibility between BMI and PU was found as the PU(PTMO1000) was employed.To whom all correspondence should be addressed.  相似文献   

9.
Interpenetrating polymer networks (IPNs) of 2-hydroxyethyl methacrylate-terminated polyurethane (HPU) and polyurethane (PU) with different crosslinking densities of the PU network were prepared by simultaneous solution polymerization. Dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) show that compatibility of component polymers in IPN formation depends on the crosslinking density of the PU network. Physical properties such as density and water absorption rely on the subtle balance between the degree of phase separation and the crosslinking density of the PU network. In spite of the occurrence of phase separation, the tensile moduli and tensile strength of the IPNs increase with the crosslinking density of the PU network. Morphological observation by scanning electron microscopy revealed different fracture surfaces between the compatible and incompatible IPNs. Surface characteristics of the IPNs, indicated as hydrogen bonding index and hard-to-soft segment ratio, are altered considerably by varying surface morphologies. Improved blood compatibility of IPN membranes is due to the variation of the hydrophilic and hydrophobic domain distribution.  相似文献   

10.
Opposite charges, namely tertiary amine and carboxyl groups, were introduced into polyurethane (PU) and polystyrene (PS), respectively, to prepare PU/PS interpenetrating polymer networks (IPNs) by means of simultaneous bulk polymerization. Four IPNs were synthesized: a full-IPN, two semi-IPNs and a linear blend. The effect of charge groups on the mechanical properties and morphology of the four polymer alloys was investigated. It is found that the PU/PS IPN which was incorporated with charge groups is free of any phase-separation, and sufficiently uniformly distributed, as can be seen from the corresponding scanning electron microscopy (SEM) photographs. Dynamic mechanical analysis indicates that the transition peak of the loss modulus E″ will move towards the centre between the two transition peaks of both components in the absence of charge groups, as a function of an increase in the contents of the opposite charge groups. Meanwhile the storage modulus E′ will decrease in a single-stage way from the previous two-stage mode. The tensile strength in all the four polymer alloys increased markedly along with an increase in the contents of acrylic acid (AA) in the poly(styrene-acrylic acid) (PSAA), which clearly can be seen for the PU/PSAA full-IPN.  相似文献   

11.
In this work, we prepared the interpenetrating polymer networks of bismaleimide and polyether-type polyurethane(polyoxypropylene)–crosslinked epoxy (BMI/PU(PPG)–EP IPNs) by employing the simultaneous bulk polymerization technique. The polyurethane (PU)–crosslinked epoxy was identified via infrared (IR) spectra analysis. Also investigated herein were the mechanical properties, including tensile strength, Izod impact strength, and fracture energy (GIC) of the IPNs with various BMI contents in PU–crosslinked epoxy matrix. In addition, differential scanning calorimetry (DSC) analysis and the thermogravimetric analysis (TGA) were performed to examine the thermal properties of the BMI/PU(PPG)–EP IPNs. In addition, morphology and dynamic mechanical analysis (DMA) of the BMI/PU(PPG)–EP IPNs were also studied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2635–2645, 1998  相似文献   

12.
Graphene oxide and furfuryl alcohol modified graphene nanosheets (G‐FA) were used to prepare graphene/novolak composites. Effect of graphene compatibilization on the properties of the composites especially carbon yield value is evaluated. Both types of graphene nanosheets were dispersed uniquely in the novolak matrix as proved by X‐ray diffraction analysis. However, modification of graphene sheets by furfuryl alcohol results in more improved dispersions. Thermogravimetric analysis confirms the elevated thermal stability of the nanocomposites in comparison with the neat novolak. In addition, G‐FA containing composites have higher carbon yield values. A shift in the wave number of characteristic bonds of graphene after oxidation and modification with furfuryl alcohol, O? H, C?O, and C? O bonds, are seen in the Fourier transform infrared spectroscopy spectra. Raman results and scanning electron microscopy images show that graphene nanosheets reduced in size and wrinkled by oxidation and functionalization. Transmission electron microscopy image of the composite with 0.2 wt % of G‐FA reveals the presence of nanosheets with curvature. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40273.  相似文献   

13.
Films from castor oil‐based polyurethane (PU) prepolymer and nitroguar gum (NGG) with different contents (10–70 wt %) were prepared through solution casting method. The networks of PU crosslinked with 1,4‐butanediol were interpenetrated by linear NGG to form semi‐interpenetrating polymer networks (semi‐IPNs) in the blend films. The miscibility, morphology, and properties of the semi‐IPNs coded as PUNG films were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, wide‐angle X‐ray diffraction, density measurement, ultraviolet spectroscopy, thermogravimetric analysis, tensile, and solvent‐resistance testing. The results revealed that the semi‐IPNs films have good miscibility over the entire composition ratio of PU to NGG under study. The occurrence of hydrogen‐bonding interaction between PU and NGG played a key role in improvement of the material performance. Compared with the pure PU film, the PUNG films exhibited higher values of tensile strength (11.7–28.4 MPa). Meanwhile, incorporating NGG into the PU networks led to an improvement of thermal stability and better solvent‐resistance of the resulting materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4068–4079, 2007  相似文献   

14.
The interpenetrating polymer networks (IPN) of polyurethanes (PU) and a glycidyl ether of phenol formaldehyde (GEPF) were prepared by a simultaneous polymerization method. The dynamic mechanical properties and morphologies of the IPNs were investigated. It was found that multiphased morphology was formed in the PU/GEPF IPNs. With the PU based on polyester- or polyether-type polyols, the dynamic mechanical analysis (DMA) of these IPNs exhibited various shifts in the loss moduli (E″) of the high and low temperature transition domains depending upon the types and molecular weights of the polyols employed in the PU. Three distinct transition domains were observed as the PU content increased up to a certain level.  相似文献   

15.
We have studied the mechanical property and swelling behavior of semi-interpenetrating polymer networks (semi-IPNs) of poly(vinyl alcohol) (PVA) and polyurethane (PU) with reactive groups under different experimental conditions. Tensile strength and elongation of these semi-IPNs are strongly dependent on the composition of IPNs and degree of PU crosslinking. It is clear that the composition of PVA and PU forms different IPNs morphology, which would determine the final mechanical property. The experimental results also demonstrate that the degree of crosslinking, which is controlled by heat treating temperature time, and amount of reactive groups, affects the swelling behavior of IPNs. With a change in the degree of crosslinking, the degree of swelling of IPNs is also different. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 473–479, 1998  相似文献   

16.
The effect of polyurethane on the mechanical properties and Mode I and Mode II interlaminar fracture toughness of glass/epoxy composites were studied. Polyurethanes (PU) synthesized using polyols and toluene diisocyanate were employed as modifier for epoxy resin by forming interpenetrating polymer network. The PU/Epoxy IPN was used as matrix material for GFRP. PU modified epoxy composite laminates having varying PU contents were prepared. The effect of PU content on the mechanical properties like interlaminar fracture toughness (Mode I, G1c and Mode II, GIIc), tensile strength, flexural strength, and Izod impact strength were studied. The morphological studies were conducted on the fractured surface of the composite specimen by scanning electron microscopy (SEM). Tensile strength, flexural strength, and impact strength of PU‐modified epoxy composite laminates were found to increase inline with interlaminar fracture toughness (G1c and GIIc) with increasing PU content to a certain limit and then it was found to decrease with increase in PU content. It was observed that toughening of epoxy with PU increases the Mode I and Mode II delamination toughness up to 17 and 120% higher than that of untoughened composite specimen, respectively. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
ABSTRACT: Silicalite-poly(furfuryl alcohol) [PFA] composite membranes were prepared by solution casting of silicalite-furfuryl alcohol [FA] suspension on a porous polysulfone substrate and subsequent in situ polymerization of FA. X-ray diffraction, nitrogen sorption, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize silicalite nanocrystals and silicalite-PFA composite membranes. The silicalite-PFA composite membrane with 20 wt.% silicalite loading exhibits good oxygen/nitrogen selectivity (4.15) and high oxygen permeability (1,132.6 Barrers) at 50°C. Silicalite-PFA composite membranes are promising for the production of oxygen-enriched air for various applications.  相似文献   

18.
Interpenetrating polymer networks (IPNs) based on a polyurethane (PU) and two unsaturated polyester (UPE) resins (a commercially available UPE and a partially endcapped UPE) were prepared. The mechanical properties, such as tensile strength, elongation at break, impact strength, and dynamic mechnical properties of IPNs, were studied by changing reaction temperature, PU reaction rate, and UPE reaction rate. Owing to the unique microgel formaton of UPE, the first formed network tends t be the dispersed phase in the PU-UPE IPN system. The reaction sequence was found to be an important factor in determining the phase mixing and phase morphology of the IPNs. When the PU reaction was faster, extensive phase mixing due to strong grafting or chain interpenetration was obtained. When the UPE reacted first, grafting was retarded by the microgel formation of the UPE network. It was found that simultaneous reaction of the two reacting system resulted in a co-continuous structure that provided enhanced tensile properties and impact strength.  相似文献   

19.
聚氨酯/呋喃树脂互穿聚合物网络性能的研究   总被引:4,自引:0,他引:4  
用糠醇型呋喃树脂或HF9200A环氧型呋喃树脂与聚环氧丙烷醚型聚氨酯制备了互穿聚合物网络(IPN)。通过红外光谱和扫描电子显微镜分析了聚氨酯(PU)/呋喃树脂(FA)IPN网络形成的动力学和微相分离行为,并考察了不同配比下IPN的力学性能。实验结果表明,PU/FA达到某一比值时,产生互穿聚合物网络的协同效应,可改善聚氨酯的刚性,提高呋喃树脂的抗冲击等性能  相似文献   

20.
Jinbo Li 《Polymer Bulletin》2006,56(4-5):377-384
Summary Epoxy resin/polyurethane interpenetrating polymer network nanocomposites with various contents of organophilic montmorillonite (oM-EP/PU nanocomposites) were prepared by a sequential polymeric technique and an in situ intercalation method. X-ray diffraction(XRD), and transmission electronic microscopy(TEM) analysis showed that organophilic montmorillonite (oMMT) disperses uniformly in epoxy resin/polyurethane interpenetrating networks(IPNs), and the intercalated or exfoliated microstructures of oMMT are formed. Differential scanning calorimetry(DSC) test proved that oMMT promotes the compatibility of EP phase and PU phase, and glass transition temperature(Tg) of oM-EP/PU nanocomposites improves with increasing oMMT content. Mechanical properties tests and thermal gravity analysis (TGA) indicated that oMMT and the IPNs of EP and PU exhibit synergistic effect on improving mechanical and thermal properties of pure EP. The mechanism of toughing and reinforcing of oM-EP/PU nanocomposites was further discussed by scanning electronic microscope(SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号