首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DC characteristics of XLPE (crosslinked polyethylene) power cables were investigated. Cables with an insulation thickness of 2.5 mm, 9 mm, and 13 mm using either XLPE or conductive-inorganic-filled XLPE (XL-A) were manufactured, and four kinds of breakdown tests (DC, polarity reversal, impulse, and superposing opposite polarity impulse on DC prestress) were performed. A 250 kV, XL-A cable (20 mm thickness) was designed and manufactured using the results. The test results show that the XL-A cable possesses much better DC breakdown characteristics than the XLPE cable and is adequate for use in DC cables  相似文献   

2.
This paper describes the development of ±250 kV DC XLPE cables. Through a series of material investigations and the evaluation of model cables using two kinds of XLPE compound containing inorganic filler to suppress the accumulation of space charge within XLPE insulation, ±250 kV DC XLPE cables and factory joints were designed and manufactured. To check the DC electrical performance and reliability of ±250 kV DC submarine cable, electrical tests, mechanical test and long-term aging tests were performed. The test results showed that they had sufficient properties and reliability for practical use  相似文献   

3.
An interfacial diffusion method was devised to reduce insulation thickness by improving the interfacial properties of XLPE cable insulation. This method is based on a proposed concept of the facilitation of oriented lamellar growth at the interface by addition of special ingredients to the semiconducting layer, which would diffuse into polyethylene in the three layer simultaneous extrusion process for cable manufacture. Diffusion of the ingredients would facilitate lamellae to grow perpendicularly to the semiconducting layers, as predicted theoretically from a free energy model. It was clarified experimentally that oriented lamellar growth would increase the breakdown strength of XLPE insulation. It is suggested the XLPE cables manufactured by this method could be reduced in thickness especially for extra-high voltage, or the cable could be upgraded from 65 to 154 kV as the insulation thickness remains 9 mm  相似文献   

4.
The long‐term dc properties of DC‐XLPE insulation materials, which have been developed for dc use, were investigated. It was found that the lifetime of DC‐XLPE under dc voltage application is extended by the addition of nano‐sized filler. The time dependence of the space charge distribution at 50 kV/mm was observed for 7 days. Almost no accumulation of space charge in DC‐XLPE was found. The 250‐kV DC‐XLPE cables and accessories were manufactured and subjected to a type test and PQ test for use in the Hokkaido–Honshu dc link facility owned by the Electric Power Development Co., Ltd. These tests were performed under conditions that included a polarity reversal test for line commutated converter (LCC) systems as recommended in CIGRE TB 219. The test temperature was 90 °C. The type test and PQ test were successfully completed. The DC‐XLPE cable and accessories were installed in summer 2012 for the Hokkaido–Honshu dc link. After the installation of the dc extruded cable system, a dc high‐voltage test at 362.5 kV (=1.45 PU) for 15 min was successfully completed in accordance with CIGRE TB 219. This dc extruded cable system was put into operation in December 2012 as the world's highest‐voltage extruded dc cable in service and the world's first dc extruded cable for a LCC system including polarity reversal operation.  相似文献   

5.
500-kV XLPE-insulated cable with an insulation thickness of 27 mm and its joint have been developed for long distance transmission lines. First, in the basic research made from 1989 to 1992, elicited were the performance-determining factors of XLPE cables and joints. Their respective insulation designs were made in terms of these factors. On the basis of these designs, full-sized cables and joints were manufactured in the course of the development research performed from 1992 to 1993. The next step was to evaluate the initial electrical performance to estimate the suitability of our designs. As the final step of our series of researches so far carried out, a long-term loading cycle test was carried out by means of a model line with joints as installed and using the same techniques as employed in the actual commercial lines for full eight months. We could thus verify the long-term reliability for commercial use. The authors discuss EMI, performance dominating effects and quality control, and initial and long term electrical performance testing  相似文献   

6.
A 500-kV XLPE insulated cable with an insulation thickness of 27 mm has been developed for long-distance transmission lines. Basic studies on the 500-kV XLPE cable have shown that contaminants in the insulation may determine electrical performance. This hypothesis is justified by the good correlation obtained between statistical estimations of the size of the largest contaminant in the insulation and electrical characteristics of full-size cables. Voltage-withstand and long-term tests have confirmed design values for minimum breakdown stress, ac and impulse voltage, and degradation coefficients. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 118 (1): 28–40, 1997  相似文献   

7.
This paper discusses the results of a basic study for the development of 500 kV XLPE power cables. The authors have established that the factors that decide the performance of today's XLPE cables are impurities in the insulator and protrusions on the semiconductive layer, and that the insulation performance of XLPE power cables is determined by the size of these defects. In model tests of XLPE power cables, the minimum insulation breakdown stress of cables was determined, to set the design values for 500 kV XLPE cable. As a result, it was found that it is possible to design cables having an insulation thickness of 25 mm  相似文献   

8.
500-kV XLPE-insulated cable with an insulation thickness of 27 mm has been developed for long-distance transmission lines. Basic studies on 500-kV XLPE cable have shown that contaminants in the insulation may be the factor determining electrical performance. This hypothesis is justified by the good correlation obtained between statistical estimations of the size of the largest contaminant in the insulation and the electrical characteristics of full-sized cables. Voltage-withstand and long-term tests have confirmed the design values for minimum breakdown stress, for AC and impulse voltage, and for the degradation coefficients  相似文献   

9.
Information on space-charge behavior in thick insulated samples aids in understanding the dc characteristics of polymer-insulated dc cables. The pulsed electroacoustic method is used to investigate several space charge formation factors in 2 mm-thick polyethylene (PE). The following results were obtained. For measurement factors: (1) A polymeric semiconducting electrode provides a more accurate measurement than does a metal electrode as a result of better matching of acoustic impedance with PE. (2) Within a dc electrical stress range of several tens kV/mm, the space charge distributions under and after dc voltage application are almost the same; this is due to a comparatively long time of space-charge decay. (3) The space-charge distribution of a plate sample agrees with that of a cable sample having the same insulation thickness. For insulating material factors: (1) The amount of space charge in crosslinked polyethylene (XLPE) is much larger than that in low-density PE (base of XLPE). The space charge of XLPE continues to increase even after dc voltage application (24 h); that of LDPE reaches equilibrium with a few hours. (2) The aforementioned space charge difference between XLPE and LDPE is assumed to be caused by ionic impurities in XLPE, not by the additives themselves (acetophenon and cumylalcohol as byproducts of cross linking and antioxidant).  相似文献   

10.
陈果  蔡剑  谢书鸿  胡明  刘利刚  景洋  凌志伟 《中国电力》2020,53(7):29-35,43
介绍一种额定电压66 kV抗水树XLPE绝缘轻型海底电缆的研制方法。通过对模型电缆进行工频电压和雷电冲击电压击穿性能测试,按照CIGRE TB 722:2018规范对研制样品进行500 Hz/3000 h、50 Hz/8750 h、50 Hz/17500 h 3种湿式绝缘质量鉴定试验,按照CIGRE TB 490:2012和CIGRE TB 623:2015规范对研制产品进行型式试验,试验结果完全满足设计规范要求。在未来的深远海、大功率海上风机互联阵列海缆选型中,66 kV抗水树XLPE绝缘轻型海底电缆可以完美替代35 kV XLPE绝缘海底电缆。  相似文献   

11.
The features of a long-distance underground line, using 275-kV cross-linked polyethylene (XLPE) cable with extrusion-type molded joints (EMJs) are described. The line has a transmission capacity of 440 MW/cct and a 9.5-km section length. The cable has a cross-sectional area of 1400 mm2 and insulation thickness of 17 mm. The EMJ, which was developed to withstand the higher stresses of the 275-kV cable, has the following features: (1) the conductor is connected using a copper ferrule, (2) semiconducting heat-shrinkable tubes are used for both inner and outer semiconducting layers, and (3) the insulation unit, applied on top of the stress-relieving cone, is made of insulating and semiconducting XLPE parts cured together in the factory. The fabrication, of the joint is described  相似文献   

12.
为了深入了解电缆附件采用的橡胶绝缘材料与电缆的交联聚乙烯(XLPE)绝缘之间形成的绝缘界面的电气性能,及其与橡胶材料的厚度、过盈量的配合等相互之间的关系,进行了系统研究和试验,获得了一系列的结果,为今后的电缆附件的设计与制造提供了可靠的依据。  相似文献   

13.
就电缆绝缘厚度设计方法、XLPE电缆绝缘减薄的技术发展作了概述。针对110kV、220kVXLPE电缆绝缘厚度国内外存在的差异,从工程选用到全面对待提出了建议。  相似文献   

14.
For pt. 1 see ibid., vol. 18, no. 2, p. 65-67 (2002). In this second part of a three part series introducing the Shin-Keiyo/Toyosu underground transmission line using a 500-kV XLPE cable, the authors describe the specially developed extrusion-molded joints and after-installation test procedures. Based on the results of basic research extensively done to design the 500-kV extrusion-molded joints, the insulation thickness was determined to be 36 mm through careful considerations of various design parameters obtained. As in the case of the cable, the main factors that determine the performance of the joints are contaminants and voids, and their permissible levels are determined. Unlike cables, it is impossible to conduct sampling inspections for the extrusion-molded joints after they were assembled. Therefore, particular emphasis has to be placed on supervision and inspection of conditions during the assembly process  相似文献   

15.
Application of XLPE cables to extra-high-voltage (EHV) transmission lines is expanding due to their excellent electrical properties and ease of maintenance, and 275-kV long-distance underground transmission lines are reaching the stage of practical utility. Extrusion molded joints (EMJs) are widely used as the XLPE cable joint for EHV transmission lines. However, EMJs have presented problems because of their insulation. They are formed on site through extruding and molding of crosslinkable PE like the cable, and need a long time for installation on site and higher jointing technique. The prefabricated joints (PJs), which are already applied to 154-kV transmission line, are installed on site by using the parts manufactured and tested in the factory, they require a shorter installation environment. This report introduces the results obtained regarding the improvement of the electrical property, workability and the performance of PJs, designed for 275-kV XLPE cable. These joints are planned to be used for 275-kV transmission lines from 1995  相似文献   

16.
The installation of an underwater cable connection in Lake Lugano is described. The cable routing, choice of cross-linked polyethylene (XLPE) as the cable insulation, grounding system, laying methods, protection conduits, cable laying, and accessories are discussed. The submarine described has operated without incident since being placed in service in 1985. The three circuits described, which represent an innovation in submarine cables from both a product and an installation point of view, show that XLPE, when properly manufactured and used with the proper cable construction (a hermetically sealed metallic sheath), can be used as a reliable insulating material even when installed directly in water  相似文献   

17.
单芯XLPE电缆金属护套绝缘在线监测研究   总被引:3,自引:0,他引:3  
分析了电缆金属护套接地模型,提出了环流法在线监测XLPE电缆金属护套绝缘性能。试验结果表明,环流值与金属护套绝缘性能差异密切相关,因而提出了“环流绝对值”与“环流相对变化量”的判据。开发的在线监测系统能很好地监测电缆金属护套绝缘性能,提高了电缆运行可靠性。  相似文献   

18.
国产高压XLPE电缆绝缆中允许杂质尺寸的试验研究及方法   总被引:1,自引:0,他引:1  
电树枝是影响XLPE电缆长期老化性能的重要因素,而确定高压XLPE电缆绝缘层中允许的最大杂质尺寸对于保证其长期老化性能是很重要的。本文利用针电极模拟杂质对从国产220kVXLPE电缆绝缘中所取得的试样进行了相关试验,得到电树枝起始电场强度约为270kV/mm,而杂质尖端最小曲率半径约为10μm。通过计算得到对于220kVXLPE电缆,杂质的最大允许尺寸约为130μm。这一结果与国家标准规定的允许杂质尺寸125μm基本符合,这一试验方法可以用于高压XLPE电缆中允许杂质尺寸的研究。  相似文献   

19.
交联聚乙烯(XLPE)因其优异的介电、理化性能而被广泛应用于电缆绝缘领域。在电缆的服役过程中,电缆绝缘内部会积聚空间电荷,严重时可引发电场畸变,导致电缆击穿事故发生。对于直流XLPE电缆,空间电荷的积聚及影响更加不容忽视。针对直流XLPE电缆绝缘中产生的空间电荷积聚效应,目前学界主要采用共混改性、聚合物链段接枝极性基团、纳米掺杂改性及制备高纯净绝缘料等方法来进行控制,改性后的直流XLPE电缆绝缘对空间电荷产生的抑制效果均有所提升。文中首先对上述直流XLPE电缆绝缘中空间电荷的抑制方法进行综述,介绍其抑制原理以及相应的抑制效果,然后对比总结不同抑制空间电荷方法的优缺点,最后对未来直流XLPE电缆绝缘中空间电荷抑制方法的研究发展作出展望。  相似文献   

20.
交联聚乙烯电缆热老化与电树枝化相关性研究   总被引:1,自引:0,他引:1  
热老化过程不但会影响交联聚乙烯(XLPE)电缆绝缘的物理化学性能,还对绝缘内电树的产生与生长有着一定的影响。研究了热老化后XLPE电缆绝缘中的电树行为.探讨XLPE电缆绝缘中电树枝过程与材料热老化的关系。采用带循环通风的热老化箱对XLPE电缆绝缘进行3个温度等级的热老化实验:采用针板结构电极进行电树枝实验,并利用数码显微镜观察电树枝的产生和发展情况;利用差示扫描量热法(DSC)、傅里叶红外光谱分析(FTIR)测试了不同温度热老化下XLPE电缆绝缘的物理化学性能;最后探讨了几种不同结构电树枝的生长机理.认为热老化并没有加速电树枝的生长.反而有一定的抑制作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号