首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), using the process variable trajectories to monitoring the batch process is presented in this paper. It does not need to estimate or fill in the unknown part of the process variable trajectory deviation from the current time until the end. The approach is based on a MPCA method that processes the data in a sequential and adaptive manner. The adaptive rate is easily controlled through a forgetting factor that controls the weight of past data in a summation. This algorithm is used to evaluate the industrial streptomycin fermentation process data and is compared with the traditional MPCA. The results show that the method is more advantageous than MPCA, especially when monitoring multi-stage batch process where the latent vector structure can change at several points during the batch.  相似文献   

2.
基于时段过渡分析的多时段间歇过程质量预测(英文)   总被引:2,自引:0,他引:2  
Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.  相似文献   

3.
Batch processes are important in chemical industry, in which operators usually play a major role and hazards may arise by their inadvertent acts. In this paper, based on hazard and operability study and concept of qualitative simulation, an automatic method for adverse consequence identification for potential maloperation is proposed. The qualitative model for production process is expressed by a novel directed graph. Possible operation deviations from normal operating procedure are identified systematically by using a group of guidewords. The proposed algorithm is used for qualitative simulation of batch processes to identify the effects of maloperations. The method is illustrated with a simple batch process and a batch reaction process. The results show that batch processes can be simulated qualitatively and hazards can be identified for operating procedures including maloperations. After analysis for possible plant maloperations, some measures can be taken to avoid maloperations or reduce losses resulted from maloperations.  相似文献   

4.
在线自适应批次过程监视的双滑动窗口MPCA方法   总被引:1,自引:0,他引:1  
Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide applications in process performance analysis, monitoring and fault diagnosis using existing rich historical database. In this paper, we propose a simple and straight forward multivariate statistical modeling based on a moving window MPCA (multiway principal component analysis) model along the time and batch axis for adaptive monitoring the progress of batch processes in real-time. It is an extension to minimum window MPCA and traditional MPCA. The moving window MPCA along the batch axis can copy seamlessly with variable run length and does not need to estimate any deviations of the ongoing batch from the average trajectories. It replaces an invariant fixed-model monitoring approach with adaptive updating model data structure within batch-to-batch, which overcomes the changing operation condition and slows time-varying behaviors of industrial processes. The software based on moving window MPCA has been successfully applied to the industrial polymerization reactor of polyvinyl chloride (PVC) process in the Jinxi Chemical Company of China since 1999.  相似文献   

5.
A Robust Statistical Batch Process Monitoring Framework and Its Application   总被引:3,自引:0,他引:3  
In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to latent structure (MPLS) were proposed for on-line batch process monitoring. However, they are based on the decomposition of relative covariance matrix and strongly affected by outlying observations. In this paper, in view of an efficient projection pursuit algorithm, a robust statistical batch process monitoring (RSBPM) framework, which is resistant to outliers, is proposed to reduce the high demand for modeling data. The construction of robust normal operating condition model and robust control limits are discussed in detail. It is evaluated on monitoring an industrial streptomycin fermentation process and compared with the conventional MPCA. The results show that the RSBPM framework is resistant to possible outliers and the robustness is confirmed.  相似文献   

6.
In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to latent structure (MPLS) were proposed for on-line batch process monitoring. However, they are based on the decomposition of relative covariance matrix and strongly affected by outlying observations. In this paper, in view of an efficient projection pursuit algorithm, a robust statistical batch process monitoring (RSBPM) framework, which is resistant to outliers, is proposed to reduce the high demand for modeling data. The construction of robust normal operating condition model and robust control limits are discussed in detail. It is evaluated on monitoring an industrial streptomycin fermentation process and compared with the conventional MPCA. The results show that the RSBPM framework is resistant to possible outliers and the robustness is confirmed.  相似文献   

7.
Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach. The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are de-fined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exem-plified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable. ? 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.  相似文献   

8.
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is em- ployed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.  相似文献   

9.
Nonlinear model predictive control (NMPC) is an appealing control technique for improving the per- formance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim- plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The method is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters.  相似文献   

10.
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal com-ponent analysis (PCA) is widely applied as a dimension reduction technique for capturing strong correlation un-derlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physical y and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect. The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.  相似文献   

11.
This paper deals with automatic on-line detection and diagnosis of fault patterns in multiphase batch processes. A novel and flexible approach based on the combination of hidden segmental semi-Markov models (HSMM) and multiway principal component analysis (MPCA) is proposed. In all batch operations, process variables may have correlations with each other, and MPCA is used to handle cross-correlation among process variables. In multiphase batch processes, the effect of external factors on process variables is phase-specific and the duration of each phase varies from batch to batch. HSMM is used to model the multiphase batch operation by representing each phase with a macro-state whose duration is determined by a phase-specific probability distribution of a number of micro-states. The output of each micro-state corresponds to the values of the monitored variables at a specific point in time. Given this structure, MPCA-HSMM parameters are trained by the batch operation data and recursive Viterbi algorithm is used to find out the optimum state sequence from each batch. Probability values of the optimum state sequence are collected to construct the probabilistic model which is used to compute the corresponding control limit for the specified operating condition. One MPCA-HSMM model is to be built for each type of previously known operating condition—normal and fault events. The power and advantages of the proposed method are successfully demonstrated in a simulated fed-batch penicillin cultivation process. MPCA-HSMM correctly identifies the type of fault from the batch operation data.  相似文献   

12.
Batch processes lie at the heart of many industries; hence the effective monitoring and control of batch processes is crucial to the production of high-quality materials. Multiway principal component analysis (MPCA) has been widely used for batch monitoring and has proved to be an effective method for monitoring many industrial batch processes. However, because MPCA is a fixed-model monitoring technique, it gives false alarms when it is used to monitor real processes whose normal operation involves slow changes. In this paper, we propose a simple on-line batch monitoring method that uses a consecutively updated MPCA model. The key to the proposed approach is that whenever a batch successfully remains within the bounds of normal operation, its batch data are added to the historical database of normal data and a new MPCA model is developed based on the revised database. The proposed method was applied to monitoring fed-batch penicillin production, and the results were compared with those obtained using conventional MPCA. The simulation results clearly show that the ability of the proposed method to adapt to new normal operating conditions eliminates the many false alarms generated by the fixed model and provides a reliable monitoring chart.  相似文献   

13.
一种基于改进MPCA的间歇过程监控与故障诊断方法   总被引:4,自引:3,他引:4       下载免费PDF全文
齐咏生  王普  高学金  公彦杰 《化工学报》2009,60(11):2838-2846
针对基于不同展开方式的多向主元分析(MPCA)方法在线应用时各自存在的缺陷,提出一种改进的基于变量展开的MPCA方法,实现间歇过程的在线监控与故障诊断。该方法采用随时间更新的主元协方差代替固定的主元协方差进行T2统计量的计算,充分考虑了主元得分向量的动态特性;同时引入主元显著相关变量残差统计量,避免SPE统计量的保守性,且该统计量能提供更详细的过程变化信息,对正常工况改变或过程故障引起的T2监控图变化有一定的识别能力;最后提出一种随时间变化的贡献图计算方法用于在线故障诊断。该方法和MPCA方法的监控性能在一个青霉素发酵仿真系统上进行了比较。仿真结果表明:该方法具有较好的监控性能,能及时检测出过程存在的故障,且具有一定的故障识别和诊断能力。  相似文献   

14.
步进MPCA及其在间歇过程监控中的应用   总被引:2,自引:0,他引:2  
针对多向主元分析法(MPCA)在间歇过程监控过程中需要预测过程未来输出的困难,提出了一种新的步进多向主元分析方法。该方法通过建立一系列的PCA模型,避免了对预估过程变量未来输出的需要,通过引入遗忘因子能够自然地处理多阶段间歇过程的情况。对于多阶段链霉素发酵过程的监控表明,相对于普通MPCA,步进MPCA能够更精确地对过程故障行为进行描述。  相似文献   

15.
On-line batch process monitoring using dynamic PCA and dynamic PLS models   总被引:4,自引:0,他引:4  
Producing value-added products of high-quality is the common objective in industries. This objective is more difficult to achieve in batch processes whose key quality measurements are not available on-line. In order to reduce the variations of the product quality, an on-line batch monitoring scheme is developed based on the multivariate statistical process control. It suggests using the past measured process variables without real-time quality measurement at the end of the batch run. The method, referred to as BDPCA and BDPLS, integrates the time-lagged windows of process dynamic behavior with the principal component analysis and partial least square respectively for on-line batch monitoring. Like traditional MPCA and MPLS approaches, the only information needed to set up the control chart is the historical data collected from the past successful batches. This leads to simple monitoring charts, easy tracking of the progress in each batch run and monitoring the occurrence of the observable upsets. BDPCA and BDPLS models only collect the previous data during the batch run without expensive computations to anticipate the future measurements. Three examples are used to investigate the potential application of the proposed method and make a comparison with some traditional on-line MPCA and MPLS algorithms.  相似文献   

16.
1 INTRODUCTION Process monitoring and fault diagnosis are the most important tasks that determine the successful operation and the final product quality. In batch proc- ess, small changes in the operating conditions may impact the final product quality, which is often exam- ined off-line in a laboratory. If the quality variable does not satisfy a specified criterion, then it is not possible to examine the causes of fault and the time of its occurrence[1]. Therefore, early fault detection …  相似文献   

17.
An integrated framework consisting of a multivariate autoregressive (AR) model and multi-way principal component analysis (MPCA) is described for the monitoring of the performance of a batch process. After pre-processing the data, i.e., batch data unfolding, mean-centring and scaling, the data are then filtered using an AR model to remove the auto- and cross-correlation inherent within the pre-processed batch data. Model order is determined using Akaike information criterion and the model parameters are estimated through the application of partial least squares to attain a stable solution. MPCA is then applied to the residuals from the AR model. Three monitoring statistics are considered for the detection of the onset of process abnormalities in the batch process. The main advantage of the proposed approach is that it can monitor batch dynamics along the mean trajectory without the requirement to estimate future observed values. The proposed AR model-based approach is illustrated through its application to two polymerization processes. The case studies indicate that it gives better monitoring results in terms of sensitivity and time to fault detection than the approaches proposed by Nomikos and MacGregor [1994. Monitoring batch processes using multi-way principal components. A.I.Ch.E. Journal 40(8), 1361-1375] and Wold et al. [1998. Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems 44, 331-340].  相似文献   

18.
将多方向主元分析(MPCA)理论应用到一个实际的PVC间歇反应过程的性能监测与故障诊断中。由于间歇反应的特点,数据具有多维性,应用传统的主元分析将使过程的统计建模与故障诊断难以实现。MPCA可将间歇过程的多维数据沿时间轨迹分割,使得多批次的数据可以在各时间序列轨迹上建立相应的PCA模型,从而完成对间歇过程的实时监视及故障诊断。  相似文献   

19.
In order to achieve satisfactory monitoring, multivariate statistical process models should well reflect process nature. In manufacturing systems, many batch processes are inherently multiphase. Usually, different phases have different characteristics, while gradual transitions are often observed between phases. Another important feature of batch processes is the unevenness of operation durations. Especially, in multiphase batch processes, the situation becomes more complicated. In this study, a batch process modelling and monitoring strategy is proposed based on Gaussian mixture model (GMM), which can automatically extract phase and transition information for uneven‐duration batch processes. The application results verify the effectiveness of the proposed method. © 2011 Canadian Society for Chemical Engineering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号