首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
张珂嘉  黄树成 《计算机与数字工程》2021,49(10):1963-1966,2047
传统的K-means算法存在初始质心敏感、需要人为指定K个数等问题,可以通过融合Canopy算法在一定程度上缓解,但是仍然存在抗噪能力弱、质心选择盲目、运算时间长等问题.论文提出了一种改进算法,在抗噪性、初始质心选择、运算过程三方面,对Canopy-K-means算法进行优化.该算法采用了剪枝、最大最小规则、相似度计算等策略来实现算法目标.实验数据表明,改进后的Canopy-K-means算法对比传统的Canopy-K-means算法、K-means算法均具有更高的检测率、更低的误报率.  相似文献   

2.
异常检测是入侵检测中防范新型攻击的基本手段,本文应用增强的K-means算法对检测数据进行聚类分类.计算机仿真结果说明了该方法对入侵检测是有效的.  相似文献   

3.
针对已有检测机制存在的对于未知攻击行为无能为力、漏报率较高、检测效率低以及缺少规则库自动扩充机制等问题,结合数据挖掘技术的相关知识,设计了基于数据挖掘的改进网络入侵检测系统模型。模型中选取聚类分析K-means算法和关联规则挖掘Apriori算法,并对其进行改进。用改进的K-means算法实现正常行为类及数据分离模块,用改进Apriori算法实现规则库的自动扩充功能,并通过实验验证了两个算法的功能。  相似文献   

4.
针对K-means算法对于初始聚类中心选择敏感问题,提出了一种改进的K-means算法,该算法优化了聚类中心选择问题,能够获得全局最优的聚类划分,同时减少了算法的时间复杂度。实验结果表明,采用本文的算法进行网络入侵检测,相对于经典的聚类算法,能获得理想的网络入侵检测率和网络误报率。  相似文献   

5.
入侵检测系统对于保障网络安全至关重要。针对传统的单一检测算法很难对不同种类的攻击都有很好检测效果的问题,提出一种结合极限学习机与改进K means算法的入侵检测方法。基于算法级联的方式,利用新型线性修正单元(PReLU)激活函数对极限学习机算法进行优化,采用设置距离阈值的方式,实现K means算法自动选择初始聚类中心与聚类簇数目的双重优化,设计了一种混合式入侵检测方法。采用NSL KDD数据集对所提出的入侵检测方法进行仿真实验,实验结果表明,与传统的BP神经网络、支持向量机与极限学习机算法相比,该方法有效地提高了检测效果,同时降低了误报率。  相似文献   

6.
传统的聚类算法存在很多缺点,因此需要做进一步的研究。通过对传统的K-means算法和加权熵措施的K-means算法的研究,提出了一种改进的加权熵措施的K-means算法,且该算法采用了一种新的计算对象间距离的方法,不仅能使在同一个簇中任意对象之间的距离尽可能的小,更能使得不同簇中的任意对象之间的距离尽可能的大。通过在KDD Cup99数据集上实验仿真,表明该算法具有较强的实用性和自适应功能。  相似文献   

7.
为了弥补传统K-means聚类算法在K值确定和初始中心选择难等方面的不足,基于“合并与分裂”思想,提出一种改进的K-means聚类算法。将数据独立程度概念引入实验数据子集构造理论中,利用独立程度评价属性的重要性;根据点密度将数据集合并为若干类,结合最小支撑树聚类算法与传统K-means聚类算法实现分裂;使用KDD Cup99数据集对改进算法在入侵检测中的应用进行仿真实验。结果表明,改进算法在检测率和误报率方面均优于传统K-means算法。  相似文献   

8.
傅涛  孙文静 《计算机科学》2013,40(11):137-139
PSO算法是一种基于群体智能的群优化和群搜索算法,效率高、收敛快。提出将其与K-means算法结合,用于网络入侵检测。实验表明,PSO-based K-means算法克服了K-means算法对初始聚类中心、孤立点和噪声敏感且易陷入局部最优解的缺点,收敛速度快,检测准确率较高。  相似文献   

9.
聚类算法在网络入侵检测中的应用   总被引:18,自引:1,他引:18  
向继  高能  荆继武 《计算机工程》2003,29(16):48-49,185
分析了目前的入侵检测技术,提出了使用聚类算法进行网络入侵检测的方法,并通过试验说明了该方法的应用效果。  相似文献   

10.
针对K-means算法全局搜索能力的不足,提出了一种基于改进模拟退火的优化K-means(SA-KM)的聚类算法,该算法克服了K-means聚类算法对初始聚类中心选择敏感问题。为了提高SA-KM算法的聚类划分质量,提出了一种用于评价聚类结果的评价函数,该函数更为准确地反映类内距离和类间距离。仿真结果表明使用该算法在进行入侵检测时,能够检测出多种类型的入侵行为,能够保持较高的网络入侵检测率和较低网络入侵的误报率。  相似文献   

11.
一种K-means聚类算法的改进与应用   总被引:1,自引:0,他引:1  
K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离和距离均和,将两者的大小比较作为识别孤立点和噪声点的依据,从而删除孤立点,减少对数据聚类划分的影响。最后将改进后的Kmeans算法应用于入侵检测系统并进行仿真实验,结果表明,基于改进的K-means算法的入侵检测系统一定程度上降低了误报率及误检率,提高了检测的准确率。  相似文献   

12.
王娟 《微型机与应用》2011,30(20):71-73,76
传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means算法的局部性和对初始聚类中心的敏感性。  相似文献   

13.
针对传统K均值聚类方法采用聚类前随机选择聚类个数K而导致的聚类结果不理想的问题,结合空间中的层次结构,提出一种改进的层次K均值聚类算法。该方法通过初步聚类,判断是否达到理想结果,从而决定是否继续进行更细层次的聚类,如此迭代执行,从而生成一棵层次型K均值聚类树,在该树形结构上可以自动地选择聚类的个数。标准数据集上的实验结果表明,与传统的K均值聚类方法相比,提出的改进的层次聚类方法的确能够取得较优秀的聚类效果。  相似文献   

14.
引入事务的恢复机制改进K—means算法,改进后的算法允许在运行过程中的任何时刻停机,重新启动后可在停机前运算成果的基础上继续运算,直至算法结束。改进后的算法使得普通机器条件下针对大数据集运用K—means算法成为可能。改进后的算法在长达400h的聚类运算中得到了检验。  相似文献   

15.
针对集中式系统框架难以进行海量数据聚类分析的问题,提出基于MapReduce的K-means聚类优化算法。该算法运用MapReduce并行编程框架,引入Canopy聚类,优化K-means算法初始中心的选取,改进迭代过程中通信和计算模式。实验结果表明该算法能够有效地改善聚类质量,具有较高的执行效率以及优良的扩展性,适合用于海量数据的聚类分析。  相似文献   

16.
针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在稳定性方面,都明显优于标准的K-均值算法。  相似文献   

17.
针对初始聚类中心对传统K-means算法的聚类结果有较大影响的问题,提出一种依据样本点类内距离动态调整中心点类间距离的初始聚类中心选取方法,由此得到的初始聚类中心点尽可能分散且具代表性,能有效避免K-means算法陷入局部最优。通过UCI数据集上的数据对改进算法进行实验,结果表明改进的算法提高了聚类的准确性。  相似文献   

18.
传统K-均值算法对初始聚类中心敏感大,易陷入局部最优值.将遗传算法与K均值算法结合起来进行探讨并提出一种改进的基于K-均值聚类算法的遗传算法,改进后的算法是基于可变长度的聚类中心的实际数目来实现的.同时分别设计出新的交叉算子和变异算子,并且使用的聚类有效性指标DB-Index作为目标函数,该算法很好地解决了聚类中心优化问题,与之前的两种算法相比,改进后的算法改善了聚类的质量,提高了全局的收敛速度.  相似文献   

19.
提出一种新的选取初始聚类中心的算法,该算法结合了凝聚层次聚类算法AGNES,利用该算法选出初始聚类中心,再应用到K-means算法中进行聚类。实验表明,改进的算法聚类效果更好,准确率得到了提高,迭代次数也明显减少,还能够发现异常点。  相似文献   

20.
一种结合人工蜂群和K-均值的混合聚类算法   总被引:1,自引:1,他引:1  
传统的K-均值聚类算法虽然收敛速度快,但由于过度依赖初始聚类中心,算法的鲁棒性较差。为此,提出了一种改进人工蜂群算法与K-均值相结合的混合聚类方法,将改进人工蜂群算法能调节全局寻优能力与局部寻优能力的优点与K-均值算法收敛速度快的优点相结合,来提高算法的鲁棒性。实验表明,该算法不仅克服了传统K-均值聚类算法稳定性差的缺点,而且聚类效果也有了明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号