首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A facile and reliable electrochemical technique at beta-cyclodextrin incorporated carbon nanotubes modified glassy carbon electrode (beta-CD/CNTs/GCE) was proposed for determination of pentachlorophenol (PCP). The electrochemical behavior of PCP at the beta-CD/CNTs/GCE was investigated by cyclic voltammetry and linear sweep voltammetry. The beta-CD/CNTs/GCE showed good analytical performance characteristics in electrocatalytic oxidation of PCP, compared with the simple carbon nanotube modified electrode (CNTs/GCE) and bare glassy carbon electrode (GCE). After accumulation for 5 min on beta-CD/CNTs/GCE, the peak current increased linearly with the concentration of PCP in the range from 8.0 x 10(-7) to 1.04 x 10(-5) mol/L. The detection limit was 4.0 x 10(-8) mol/L at 3 sigma level. The proposed electrode presented good repeatability for the determination of PCP in artificial wastewater, and the recovery was 97%-103%. This modified electrode combined the advantages of carbon nanotubes and supramolecular cyclodextrin, leading to new capabilities for electrochemical detection of PCP.  相似文献   

2.
利用电化学还原法制备MnO2纳米棒-还原石墨烯复合修饰电极(MnO2 NRs-ErGO/GCE)用于苋菜红的检测。采用SEM和XRD分别对修饰电极材料进行微观形貌和成分结构表征。通过循环伏安法考察了苋菜红在裸电极、ErGO/GCE和MnO2 NRs-ErGO/GCE上的电化学行为,并对测定条件如pH值、富集电位、富集时间进行了优化。结果表明,MnO2 NRs-ErGO增大了GCE电化学活性面积,提高了苋菜红的电化学氧化响应。在最优的检测条件下,MnO2 NRs-ErGO/GCE线性扫描伏安法检测苋菜红线性范围为2.0×10-8~1.0×10-5 mol/L和1.0×10-5~4.0×10-4 mol/L,检测限为1.0×10-8 mol/L。MnO2 NRs-ErGO/GCE用于真实饮料样品检测,获得满意结果。  相似文献   

3.
Electrochemical determination of dopamine (DA) and serotonin (5-HT) have been studied at a modified glassy carbon electrode (GCE) in 0.1 M phosphate buffer solution (PBS) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at pH 7.4, all over the interfering biomolecule ascorbic acid (AA). The GCE was modified by palladium-functionalized, multi-walled carbon nanotubes (MWCNTs-Pd) with electrochemical deposition of poly 3,4-ethylenedioxy pyrrole (PEDOP), denoted as PEDOP/MWCNTs-Pd/GCE, and investigated by SEM and EIS experiments. The highly electrocatalytic activity of the modified electrode toward 5-HT and DA was demonstrated from the sensitive and well-separated voltammetric experiment. The oxidation peaks found were 0.165 and 0.355 mV for DA and 5-HT, respectively. The composite film shows a significant accumulation effects on two species, as well as the mutual interference among the analytes. This biosensor was best in response compared to other modified electrodes made in the same lab. The lowest detection limits were found to be 5.0 x 10(-9) and 1.0 x 10(-8) for 5-HT and DA, respectively. The respective linear ranges were determined as 1.0 x 10(-7) to 2.0 x 10(-4) and 1.0 x 10(-7) to 2.0 x 10(-4) for 5-HT and DA.  相似文献   

4.
Nanowires of poly-cobalt[tetrakis(o-aminophenyl)porphyrin] (PCoTAPPNW) were fabricated by electrochemical polymerization by the cyclic voltammetric method in anodic aluminum oxide membranes. A glassy carbon electrode (GCE) modified by PCoTAPPNW and single-walled carbon nanotubes (SWNT) without any binder was investigated with voltammetric methods in phosphate buffer saline (PBS) at pH 7.4. The PCoTAPPNW + SWNT/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide (H2O2), which shortened the response time (< 5 seconds), showed detection limit of 1.0 microM and enhanced the sensitivity for H2O2 detection with 194 microA mM(-1) cm(-2). The PCoTAPPNW + SWNT/GCE can be used to monitor H2O2 at very low concentration in physiological pH as an efficient electrochemical H2O2 sensor.  相似文献   

5.
A chemically modified electrode [poly(TAPP)-SWNT/GCE] was prepared by electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP)-single walled carbon nanotubes (SWNT) on the surface of a glassy carbon electrode (GCE). This modified electrode was employed as an electrochemical biosensor for the determination of serotonin concentration and exhibited a typical enhance effect on the current response of serotonin and lower oxidation overpotential. The biosensor was very effective to determined 5-HT in a mixture. The linear response was in the range 2.0 x 10(-7) to 1.0 x 10(-5) M, with a correlation coefficient of 0.999 [i(p)(microA) = 3.406 C (microM)+0.132] on the anodic current, with a detection limit of 1 x 10(-9) M. Due to the relatively low currents and different potentials in the electrochemical responses to ascorbic acid and dopamine, the modified electrode is a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of ascorbic acid and dopamine.  相似文献   

6.
报道了一种聚丙烯酰胺(PAAM)-植酸(PA)-聚多巴胺(PDA)导电分子印迹膜(PAAM-PA-PDA MIP)化学修饰电极的制备、表征及其在电化学定量检测食品添加剂胭脂红(P4R)中的应用。即通过原位电聚合和碱液洗脱的方法在玻碳电极(GCE)表面制得具有分子识别作用的导电分子印迹膜(PAAM-PA-PDA MIP)化学修饰电极,并利用SEM、循环伏安法(CV)及交流阻抗法(EIS)对该导电分子印迹膜化学修饰电极的表面形貌和电化学性能进行表征。研究结果表明该方法所制备的导电分子印迹膜化学修饰电极具有良好的电化学检测性能和应用前景,其对P4R的线性检测区间为10~200 μmol/L,灵敏度为0.085 A/mol/L,检测限可达23.6 nmol/L,并可有效地应用于P4R实际样品的分析检测。   相似文献   

7.
A single-wall carbon nanotubes (SWNT)-film coated glassy carbon electrode (GCE) was described for the determination of tryptophan. In pH 2.5 Na2HPO4-citric acid buffer, tryptophan yields a well-defined and very sensitive oxidation peak at about 1.08 V at the SWNT-film coated GCE. The oxidation peak current increases greatly and the peak potential shifts toward more negative direction at the SWNT-modified GCE in contrast to that at the bare GCE. Under optimized conditions, the oxidation peak current is proportional to the concentration of tryptophan over the range from 4 x 10(-8) to 1 x 10(-5) mol/L. The detection limit is 1 x 10(-8) mol/L at 3 min of accumulation. Using the proposed method, tryptophan in the human's blood serum samples was determined.  相似文献   

8.
An EDTA bonded conducting polymer modified electrode (EDTA-CPME) was fabricated by polymerization of 3',4'-diamino-2,2';5',2'-terthiophene monomer on a GCE, followed by the reaction with EDTA in the presence of catalyst. The surface of the resulting modified electrode was characterized with EQCM, ESCA, SEM, Auger electron spectroscopy, scanning Auger microscopy, and electrochemical methods. The amounts of polymer and EDTA attached on the polymer film were determined. Simple immersing of the EDTA-CPME into a sample solution led to the chemical deposition through the complexation with Pb2+, Cu2+, and Hg2+ ions, simultaniously. Various experimental parameters that affect the simultaneous analysis of the metal ions, e.g., EDTA amount, pH, deposition time, and deposition temperature, were optimized. Calibration plots for the EDTA-CPME with square wave voltammetry were obtained in the concentration range between 5.0 x 10(-10) and 1.0 x 10(-7) M for Cu(II) and between 7.5 x 10(-10) and 1.0 x 10(-7) M for Pb(II) and Hg(II). The detection limits for Pb(II), Cu(II), and Hg(II) ions were determined to be about 6.0 x 10(-10), 2.0 x 10(-10), and 5.0 x 10(-10) M, respectively. Interference effects from other metal ions were studied at various pHs and it was found that there was little or no effect on the simultaneous determination. The stability of the EDTA-CPME was remarkably improved by coating the surface with the Nafion film, and the electrode can be used for more than one month. Analytical availability of the EDTA-CPME was demonstrated by the application for the certified standard urine reference material and tap water.  相似文献   

9.
Microelectrode voltammetry has been considered to be a powerful technique for single biological cell analysis and brain research. In this paper, we have developed a simple method to get highly sensitive carbon fiber nanoelectrodes (CFNE) modified by single-walled carbon nanotubes (SWNTs) on the basis of our previous work. The electrochemical behavior of SWNTs/CFNE was characterized by potassium ferricyanide, dopamine (DA), epinephrine (E), and norepinephrine (NE) using cyclic voltammetry (CV). Compared with CFNE, SWNTs/CFNE has a much larger available internal surface area per external geometric area, which is supported by SEM images. The modified electrodes show very high sensitivity and favorable electrochemical behavior toward these neurotransmitters. The peak current increases linearly with the concentration of DA, E, and NE in the range of 1.0 x 10(-)(7)-1.0 x 10(-)(4), 3.0 x 10(-)(7)-1.0 x 10(-)(4), and 5.0 x 10(-)(7)-1.0 x 10(-)(4) M, respectively. The CV detection limit (S/N = 3) of DA, E, and NE is 7.7 x 10(-)(9), 3.8 x 10(-)(8), and 4.2 x 10(-)(8) M, respectively. The modified electrode exhibited almost the same electrochemical behavior after 15 days, indicating that SWNTs/CFNE is pretty stable and has good reproducibility.  相似文献   

10.
2-Aminothiazole was electropolymerized by cyclic voltammetry (CV) on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) surface. Poly(2-aminothiazole)/MWCNTs/GCE was used for determination of copper ions. The anodic peak currents of copper ions evaluated by differential pulse stripping voltammetry (DPSV) are linear with the concentrations in the range from 1.0 x 10(-7) M to 2.0 x 10(-5) M with a linear coefficiency of 0.9985. The detection limit is 2.0 x 10(-9) M calculated for a signal-to-noise ratio of 3 (S/N = 3). The proposed method was applied successfully to the determination of copper ions in drinking water, and the recovery was 96%.  相似文献   

11.
A new biosensor is prepared by cross-linking glucose oxidase (GOD) with glutaradehyde at the electrode combining Au nanoparticles (AuNP) with multi-walled carbon nanotubes (MWCNTs). Au nanoparticles-doped chitosan (CS) solution (AuNP-CS) is prepared by treating the CS solution followed by chemical reduction of Au (III) with NaBH4. MWCNTs are then dispersed in AuNP-CS solution. TEM, FT-IR, and UV-Vis show that the AuNP-CS solution is highly dispersed and stable. The synergistic effect between AuNP and CNTs of the AuNP-CNTs-CS material has been investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric methods. The modified glassy carbon electrode (GCE) allows low-potential detection of H2O2 with high sensitivity and fast response time. With the immobilization of GOD, a biosensor has been constructed. In phosphate buffer solutions (PBS, pH 7.0), nearly free interference determination of glucose has been realized at 0.4 V(vs. Ag/AgCl/3.0 M KCI) with a wide linear range from 2.0 x 10(-5) to 1.5 x 10(-2) M and a fast response time within 5s. The biosensor has been used to determine glucose in human serum samples and the results are satisfactory.  相似文献   

12.
The analytical performance of hydroxyapatite Ca10(PO4)6(OH)2(HAp) screen-printed sensors designed for the detection of metals was evaluated. The hydroxyapatite plays an important role in modern analytical electrochemistry due to their usefulness for the preparation of sensors giving rise to improved responses from metals. The suitable HAp-modified carbon-paste electrode (HAp-CPE) for the electrochemical determination of lead is illustrated in this work using cyclic and square-wave voltammetry in the potential range between -0.3 and -0.8V. Perchlorate acid solution (1.0molL(-1)) was employed as the supporting electrolyte. The voltammetric measurements were carried out using as working electrode HAp-CPE, and a platinum electrode and an SCE electrode as auxiliary and reference electrodes, respectively. Under the optimized working conditions, calibration graph is linear for 5min of preconcentration time with the detection limit 7.68x10(-10)molL(-1). This detection limit is remarkably lower than those reported previously using other modified electrodes or amperometric detection. The results indicate that this electrode is sensitive and effective for the determination of Pb2+.  相似文献   

13.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.  相似文献   

14.
J Wei  J Qiu  L Li  L Ren  X Zhang  J Chaudhuri  S Wang 《Nanotechnology》2012,23(33):335707
In this paper, a 'green' and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5?×?10(-7)?M to 2?×?10(-5)?M with a detection limitation of 7.5?×?10(-8)?M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.  相似文献   

15.
二维过渡金属碳化物(MXenes)具有良好的电化学性能与辐照稳定性, 其在放射性核素电化学检测领域有潜在应用价值。本研究通过碱活化的方式处理碳化钛型MXene(Ti3C2Tx), 随后将钾插层的Ti3C2Tx(K-Ti3C2Tx)负载到玻碳电极(GCE)上得到K-Ti3C2Tx/GCE修饰电极。采用XRD、SEM、XPS等手段分别对Ti3C2Tx和K-Ti3C2Tx进行分析表征, 并进一步研究了K-Ti3C2Tx/GCE对痕量铀酰离子(UO22+)的电化学检测性能。循环伏安(CV)实验结果表明, 相比于GCE电极, K-Ti3C2Tx/GCE修饰电极对UO22+的电化学响应显著增强。进一步使用差分脉冲伏安法(DPV)扫描, 发现pH=4.0时, K-Ti3C2Tx/GCE修饰电极对UO22+在铀浓度0.5~10 mg/L范围内呈现良好的线性检测关系, 本方法的检测限为0.083 mg/L(S/N=3), 稳定性和重复性好。  相似文献   

16.
We report electrochemical preparation and characterization of poly-brilliant cresyl blue (Poly(BCB))/gold nanoparticles (Au-NPs) modified electrode. The Poly(BCB)/Au-NPs modified electrode has been used as an electrochemical sensor for the detection of hydrogen peroxide (H2O2) at lower potential (− 0.2 V). The Poly(BCB)/Au-NPs film was characterized by scanning electron microscopy, Uv-visible spectroscopy (Uv-vis) and cyclic voltammetry. We have observed that, Au-NPs attached glassy carbon electrode (Au-NPs/GCE) significantly enhanced the polymerization of BCB compared to bare GCE. The Poly(BCB) film was irreversibly attached onto the Au-NPs modified electrode, the resulting hybrid film modified electrode was electrochemically active in the pH range from 2 to 11. Attachment of Poly(BCB)/Au-NPs hybrid film on the electrode surface was confirmed by Uv-vis spectra. In addition, electrocatalytic properties of the Poly(BCB)/Au-NPs/GCE towards reduction of H2O2 have been investigated, and it was found that the sensitivity, reduction potential as well as the corresponding detection limit were improved as compared to the voltammetric response of the Poly(BCB)/GCE and Au-NPs/GCE. Based on this study, a non-enzymatic electrochemical sensor for the determination of H2O2 has been reported. Moreover, analysis of commercial H2O2 samples was performed using the proposed method and satisfactory results were obtained.  相似文献   

17.
A novel chemically modified electrode has been prepared on the basis of the attachment of multi-wall carbon nanotubes (MWNT) onto the surface of a glassy carbon electrode (GCE) in the presence of a hydrophobic surfactant, dihexadecyl phosphate (DHP). This MWNT film was characterized by transmission electron microscopy images (TEM) and scanning electron microscopy (SEM). The electrochemical behavior of tyrosine at the MWNT film coated GCE was examined and it is found that this MWNT-modified GCE greatly enhances the oxidation peak current of tyrosine. Effects of some important factors, including pH, scan rate and amount of modifier, on the oxidation process of tyrosine were investigated. When the signal to noise ratio (SNR) is 3, the detection limit is 1 x 10(-7) M. The low relative standard deviations of the detection of tyrosine in human morning urine (3.3%) and white wine (5.2%) suggest a good reproducibility of the modified electrode.  相似文献   

18.
为了检测食品中柠檬黄的含量,利用滴涂法和电化学还原法制备纳米TiO_2/还原石墨烯复合修饰玻碳电极(TiO_2-Er GO/GCE)。采用透射电子显微镜和X射线粉末衍射仪对TiO_2和TiO_2-GO两种修饰电极材料进行表征;通过循环伏安法观察了柠檬黄在不同电极上的电化学行为,并对检测条件如p H值、富集电位、富集时间进行了优化。实验结果表明:TiO_2-Er GO/GCE增大了电极的电化学活性面积,提高了柠檬黄的电化学氧化响应;最优的检测条件为p H值为3.7、富集电位为-0.20 V、富集时间为180 s;在最优的检测条件下,采用线性扫描伏安法检测柠檬黄的线性范围为2.0×10-8~2.0×10-5 mol/L,检测限为8.0×10-9 mol/L(信噪比为3)。  相似文献   

19.
Wang J  Li M  Shi Z  Li N  Gu Z 《Analytical chemistry》2002,74(9):1993-1997
The electrochemistry of horse heart cytochrome c was studied by cyclic voltammetry at a glassy carbon electrode modified with single-wall carbon nanotubes (SWNTs). A pair of well-defined redox waves was obtained in cytochrome c aqueous solution at an activated SWNT film-modified electrode. The optimal conditions for activating the SWNT film-modified electrode has been determined. The electrode reaction of cytochrome c is a diffusion-controlled process. The peak current increases linearly with the concentration of cytochrome c in the range from 3.0 x 10(-5)-7.0 x 10(-4) M. The detection limit is 1.0 x 10(-5) M. The activated SWNT film was characterized by scanning electron microscopy. Furthermore, interaction of cytochrome c with adenine was characterized by electrochemical and spectral methods.  相似文献   

20.
高粗糙度薄层贵金属纳米结构的界面组装对研制高性能的电化学传感器具有重要意义。以玻碳电极(GCE)上电沉积锯齿状形貌的半导体碲(Te)膜为模板,再将其与HAuCl_4进行原电池置换反应,制备了条棒状的粗糙Au薄膜修饰电极(AuTe-R/GCE)。在碱性环境中采用循环伏安法研究了AuTe-R/GCE对葡萄糖的电催化氧化性能,并藉此构建了无酶葡萄糖电化学传感器。结果表明,与普通的镀金GCE(Aucon/GCE)和裸Au电极相比,AuTe-R/GCE对葡萄糖的电催化氧化活性更高;在最优条件下,采用恒电位计时安培法检测了葡萄糖浓度,AuTe-R/GCE对葡萄糖的线性检测范围(LDR)为0.01~2.00 mmol·L~(-1),灵敏度为3.8 mA·mmol~(-1)·cm~(-2),检测下限(LOD)为55 nmol·L~(-1);且该无酶葡萄糖电化学传感器抗干扰能力强,稳定性好。以半导体碲膜制备特定形貌与高粗糙度薄层纳米Au的方法具有简便、快捷和低成本等优点,有望在高活性纳米电催化剂的界面组装及其电化学性能研究中被广泛应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号