首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(butylene succinate) (PBS)/graphene oxide (GO) nanocomposites were fabricated via in situ polymerization with very low GO content (from 0.03 to 0.5 wt%). The microstructures of the nanocomposites were characterized with Raman spectroscopy, fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), sedimentation experiments and atomic force microscopy (AFM). The results showed that PBS chains have been successfully grafted onto GO sheets during in-situ polymerization, accompanied by the thermo-reduction from GO to graphene. The grafted GO displayed a great nucleating effect on PBS crystallization, resulting in largely improved crystallization temperature and decreased spherules size. A simultaneous enhancement in tensile strength and elongation was achieved for PBS/GO nanocomposites fiber. Meanwhile, increase in hydrolytic degradation rate was also observed for these nanohybrids. Our result indicates that using very low content GO is a simple way to achieve good dispersion yet with remarkable property enhancement for polymer/GO nanocomposites.  相似文献   

2.
Polyurethane (PU) nanocomposite films containing highly-aligned graphene sheets are produced. Aqueous dispersion of ultralarge-size graphene oxide (GO) is in situ reduced in waterborne polyurethane, resulting in fine dispersion and high degree of orientation of graphene sheets, especially at high graphene contents. The PU/reduced GO nanocomposites present remarkable 21- and 9-fold increases in tensile modulus and strength, respectively, with 3 wt.% graphene content. The agreement between the experiments and theoretical predictions for tensile modulus proves that the graphene sheets are indeed dispersed individually on the molecular scale and oriented in the polymer matrix to form a layered structure. The moisture permeability of the nanocomposites presents a systematic decrease with increasing graphene content, clearly indicating the impermeable graphene sheets acting as moisture barrier. The synergy arising from the very high aspect ratio and horizontal alignment of the graphene sheets is responsible for this finding.  相似文献   

3.
Dispersibility of graphene sheets in polymer matrices and interfacial interaction are challenging for producing graphene-based high performance polymer nanocomposites. In this study, three kinds nanofillers; pristine graphene nanoplatelets (GNPs), graphene oxide (GO), and functionalized graphene sheet (FGS) were used to prepare polyurethane (PU) composite by in-situ polymerization. To evaluate the efficacy of functional groups on the graphene sheets, PU reinforced with GNPs, GO, and FGS were compared through tensile testing and dynamic mechanical thermal analysis. The Young's moduli of 2 wt% GO and FGS based PU nanocomposites were found significantly higher than that of same amount of GNPs loading as an evidence of the effect of functional groups on graphene sheets for the mechanical reinforcement. The strong interaction of FGS with PU was responsible to exhibit notably high modulus (25.8 MPa) of 2 wt% FGS/PU composite than the same amount of GNPs and GO loading even at elevated temperature (100 °C).  相似文献   

4.
We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites.  相似文献   

5.
Phenolic resin/expanded graphite (EG) composites were synthesized via in situ condensation polymerization of the monomers in the presence of foliated graphite. SEM observation showed that the graphite flakes were well dispersed in the phenolic resin matrix. The electrical conductivity of the composites was investigated as a function of the foliated graphite fraction. The composites containing graphite sheets exhibited an electrical conductivity percolation threshold with 3.2 wt% graphite content in polymer matrix. Inverse gas chromatography (IGC) measurements were carried out to characterize the surface of the foliated graphite before and after condensation polymerization of phenolic resin using a series of both non-polar and polar acid–base probe gases. The data obtained indicated that the character of graphite surface changed after the polymerization of phenolic resin. The dispersive component of surface free energy decreased greatly. Before polymerization the graphite surface is predominantly acidic while the surface turns to basic after polymerization. The increased polarity of surface contributed to the stronger interactions between graphite and phenolic resin and the fine dispersion of expanded graphite in the matrix, and resulted in the low conductivity percolation threshold.  相似文献   

6.
We present a simple method to fabricate a uniform-sized graphene–metal–polymer composite microsphere of core–shell structure. On the surface of amine-functionalized polymer microsphere, graphene oxide (GO) sheets were affixed to give a core–shell structure by self-assembly process followed by the immobilization of platinum (Pt) ions to the assembled GO shell. Subsequently, they were chemically reduced in situ converting both GO and Pt ions to reduced GO (RGO) and Pt nanoparticles (NPs), respectively. As a result, a robust RGO-Pt composite shell, composed of RGO sheets and well-distributed Pt NPs, was fabricated on the microsphere surface. Meanwhile, the insulative GO shell was converted to the conductive RGO-Pt shell giving 24.0 S m?1 of electrical conductivity. We demonstrated that the electrical property of the shell was significantly improved by the incorporation of Pt NPs.  相似文献   

7.
Graphene oxides (GO) were exfoliated in N,N-dimethylformamide by simple sonication treatment of the as-prepared high quality graphite oxides. By high-speed mixing of the pristine poly(amic acid) (PAA) solution with graphene oxide suspension, PAA solutions containing uniformly dispersed GO can be obtained. Polyimide (PI) nanocomposite films with different loadings of functionalized graphene sheets (FGS) can be prepared by in situ partial reduction and imidization of the as-prepared GO/PAA composites. Transmission electron microscopy observations showed that the FGS were well exfoliated and uniformly dispersed in the PI matrix. It is interesting to find that the FGS were highly aligned along the surface direction for the nanocomposite film with 2 wt % FGS. Tensile tests indicated that the mechanical properties of polyimide were significantly enhanced by the incorporation of FGS, due to the fine dispersion of high specific surface area of functionalized graphene nanosheets and the good adhesion and interlocking between the FGS and the matrix.  相似文献   

8.
The covalent functionalization of graphene oxide (GO) with poly(vinyl alcohol) (PVA) via ester linkages (GO-es-PVA) as well as the characterization of modified graphene based Nylon-6 (PA6) composite prepared by solution mixing techniques was examined. The anchoring of PVA chains on GO sheets was confirmed by XPS and FTIR measurements. The resulting functionalized sample became soluble in formic acid, allowing solution-phase processing for preparation of PA6/GO composites. Answering to the efficient polymer-chain grafting, a homogeneously dispersion of GO sheets in PA6 matrix and a dramatic improvement of interface adhesion between nanosheets and matrix were observed in PA6/GO-es-PVA composites by SEM and TEM. The depressed crystallization of PA6 chains in PA6/GO-es-PVA composites was investigated by their DSC and XRD results.  相似文献   

9.
This work prepares (3-aminopropyl) trimethoxysilane (APTMS)-functionalized reduced graphene oxide (APTMS-rGO)/polyimide (PI) composite (APTMS-rGO/PI) through in-situ polymerization. NH2-functionalized rGO coupled by APTMS demonstrates the good reinforced efficiency in mechanical and thermal properties, which is ascribed to the covalent-functionalized PI matrix by APTMS-rGO sheets. The uniform dispersion of APTMS-rGO increases the glass transition temperature (Tg) and the thermal decomposition temperature (Td), exhibiting 21.7 °C and 44 °C improvements, respectively. The tensile strength of the composites with 0.3 wt% APTMS-rGO is 31% higher than that of neat PI, and Young’s modulus is 35% higher than that of neat PI. Raman spectroscopy show the obvious G band shift, and also clearly demonstrates the enhanced interfacial interaction between rGO nanofillers and PI matrix. The high mechanical property of the APTMS-rGO/PI composites is attributed to the covalent functionalized GO by NH2 groups and its good dispersion in comparison with GO.  相似文献   

10.
Graphene nanosheets (GNSs) reinforced poly(butylene succinate) (PBS) nanocomposites are facilely obtained by a solution-based processing method. Graphene nanosheets, which are derived from chemically reduced graphite oxide (GO), are characterized by AFM, TEM, XRD and Raman spectra. The state of dispersion of the GNSs in the PBS matrix is examined by SEM observations that reveals homogeneous distribution of GNSs in PBS matrix. A 21% increase in tensile strength and a 24% improvement of storage modulus are achieved by addition of 2.0 wt% of GNS. The electrical conductivity and thermal stability of the graphene-based nanocomposite are also improved. DSC measurement indicates that the presence of graphene sheets does not have a remarkable impact on the crystallinity of the nanocomposites. Therefore, the high performances of the nanocomposites are mainly attributed to the uniform dispersion of GNSs in the polymer matrix and strong interfacial interactions between both components.  相似文献   

11.
聚苯乙烯/氧化石墨纳米复合材料的制备与性能   总被引:3,自引:0,他引:3  
利用十六烷基三甲基溴化铵对氧化石墨进行插层改性。以原住插层聚合的方式合成了聚苯乙烯/氧化石墨(PS/GO)纳米复合材料。用XRD和TEM进行的形态研究表明,氧化石墨被剥离成10nm-30nm厚的层片而分散在聚合物基体中。热重分析证明PS/GO复合材料比PS材料和普通石墨粉填充的PS材料表现出更好的热稳定性。  相似文献   

12.
原子转移自由基聚合(ATRP)是一种具有潜在应用价值的可控活性自由基聚合方法,通过ATRP反应对氧化石墨烯(GO)进行改性,可以有效控制各种接枝聚合物分子链的长度和接枝密度,赋予GO不同的功能性,如良好的溶剂分散性、环境敏感刺激响应性、生物相容性等。文中分别从GO表面固定引发剂直接引发ATRP反应和GO表面非共价键结合ATRP聚合物分子链2种途径,对ATRP反应改性GO进行综述,总结了ATRP改性反应的过程条件和研究方法,并指出了GO功能化复合材料的功能特性和应用前景。  相似文献   

13.
To improve the dispersion stability of rod-like attapulgite (ATT) in polymers, a small amount of graphene oxide (GO) nanosheets were employed as a supporter to fix ATT before introducing into polymer. The ATT nanorods were found attached tightly and dispersed uniformly on the GO nanosheets from TEM images of GO-ATT hybrids. The dispersion stability of ATT in water was also improved after being attached on GO nanosheets due to the abundant hydrophilic groups of GO, which was paramount for introducing them into polymers through water blending method. Poly(vinyl alcohol) (PVA) was then chosen to be reinforced by these GO-supported ATT via water blending method. Compared to the heavy aggregation of neat ATT in PVA, a homogeneous distribution of ATT nanorods in the matrix was achieved by introducing them in the form of GO-ATT, indicating a favorable assisted dispersion effect of GO nanosheets for ATT. Furthermore, PVA/GO-ATT nanocomposites containing only 2 wt% GO-ATT exhibited a significantly increase of 41.4 and 83.6 % in tensile strength and storage modulus, respectively.  相似文献   

14.
Graphene (GP)-based polymer nanocomposites have attracted considerable scientific attention due to its pronounced improvement in mechanical, thermal and electrical properties compared with pure polymers. However, the preparation of well-dispersed and high-quality GP reinforced polymer composites remains a challenge. In this paper, a simple and facile approach for preparation of poly(methyl methacrylate) (PMMA) functionalized GP (GPMMA) via in situ free radical polymerization is reported. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, transmission electron microscope (TEM) and thermogravimetric analysis (TGA) are used to confirm the successful grafting of PMMA chains onto the GP sheets. Composite films are prepared by incorporating different amounts of GPMMA into the PMMA matrix through solution-casting method. Compared with pure PMMA, PMMA/GPMMA composites show simultaneously improved Young's modulus, tensile stress, elongation at break and thermal stability by addition of only 0.5 wt% GPMMA. The excellent reinforcement is attributed to good dispersion of high-quality GPMMA and strong interfacial adhesion between GPMMA and PMMA matrix as evidenced by scanning electron microscope (SEM) images of the fracture surfaces. Consequently, this simple protocol has great potential in the preparation of various high-performance polymer composites.  相似文献   

15.
Electrically conductive and thermally stable polyamide 6 (PA 6) nanocomposites were prepared through one-step in situ polymerization of ε-caprolactam monomer in the presence of electrically insulating and thermally unstable graphene oxide (GO) nanosheets. These nanocomposites show a low percolation threshold of ∼0.41 vol.% and high electrical conductivity of ∼0.028 S/m with only ∼1.64 vol.% of GO. Thermogravimetric analysis and X-ray photoelectron spectroscopy results of GO before and after thermal treatment at the polymerization temperature indicate that GO was reduced in situ during the polymerization process. X-ray diffraction patterns and scanning electron microscopy observation confirm the exfoliation of the reduced graphene oxide (RGO) in the PA 6 matrix. The low percolation threshold and high electrical conductivity are attributed to the large aspect ratio, high specific surface area and uniform dispersion of the RGO nanosheets in the matrix. In addition, although GO has a poor thermal stability, its PA 6 nanocomposite is thermally stable with a satisfactory thermal stability similar to those of neat PA 6 and PA 6/graphene nanocomposite. Such a one-step in situ polymerization and thermal reduction method shows significant potential for the mass production of electrically conductive polymer/RGO nanocomposites.  相似文献   

16.
Functionalized graphene oxide (FGO) was produced by reacting graphene oxide nanosheets with vinyl trimethoxy silane (VTMS). The results confirmed the attachment of VTMS molecules to the surface of GO sheets by Si–O–C bonding. The introduction of VTMS molecules led to an excellent dispersibility in tetrahydrofuran and to the complete exfoliation of FGO with a thickness of about 1.19 nm. Meanwhile, FGO/silicone polymer composites were prepared by solution blending method. The incorporation of 0.5 wt% of FGO in silicone polymer improved remarkably the thermal stability, tensile strength, and thermal conductivity of the silicone polymer composite, due to the homogeneous dispersion of FGO in the composites as well as to the strong interfacial adhesion with silicone polymer matrix. Tensile strength and thermal conductivity of the FGO/silicone polymer composite were increased by 95.6 and 78.3 %, respectively, with the addition of 0.5 wt% FGO. The 5 % weight loss temperature of the composite at 0.5 wt% FGO loading was detected 26.1 °C higher than that of silicone polymer.  相似文献   

17.
In this work, the effects of as-produced GO and silane functionalized GO (silane-f-GO) loading and silane functionalization on the mechanical properties of epoxy composites are investigated and compared. Such silane functionalization containing epoxy ended-groups is found to effectively improve the compatibility between the silane-f-GO and the epoxy matrix. Increased storage modulus, glass transition temperature, thermal stability, tensile and flexural properties and fracture toughness of epoxy composites filled with the silane-f-GO sheets are observed compared with those of the neat epoxy and GO/epoxy composites. These findings confirm the improved dispersion and interfacial interaction in the composites arising from covalent bonds between the silane-f-GO and the epoxy matrix. Moreover, several possible fracture mechanisms, i.e. crack pinning/deflection, crack bridging, and matrix plastic deformation initiated by the debonding/delamination of GO sheets, were identified and evaluated.  相似文献   

18.
We report the effect of filler incorporation techniques on the electrical and mechanical properties of reduced graphene oxide (RGO)-filled poly(methyl methacrylate) (PMMA) nanocomposites. Composites were prepared by three different techniques, viz. in situ polymerisation of MMA monomer in presence of RGO, bulk polymerization of MMA in presence of PMMA beads/RGO and by in situ polymerization of MMA in presence of RGO followed by sheet casting. In particular, the effect of incorporation of varying amounts (i.e. ranging from 0.1 to 2 % w/w) of RGO on the electrical, thermal, morphological and mechanical properties of PMMA was investigated. The electrical conductivity was found to be critically dependent on the amount of RGO as well as on the method of its incorporation. The electrical conductivity of 2 wt% RGO-loaded PMMA composite was increased by factor of 107, when composites were prepared by in situ polymerization of MMA in the presence of RGO and PMMA beads, whereas, 108 times increase in conductivity was observed at the same RGO content when composites were prepared by casting method. FTIR and Raman spectra suggested the presence of chemical interactions between RGO and PMMA matrix, whereas XRD patterns, SEM and HRTEM studies show that among three methods, the sheet-casting method gives better exfoliation and dispersion of RGO sheets within PMMA matrix. The superior thermal, mechanical and electrical properties of composites prepared by sheet-casting method provided a facile and logical route towards ultimate target of utilizing maximum fraction of intrinsic properties of graphene sheets.  相似文献   

19.
The surface chemistry of filler is closely related to the structure and morphology of nanocomposite foams.Changing the property of filler is widely used to control the cell structures and functionalize the composite foams.Surface-functionalized graphene oxide(GO-ODA) was prepared by grafting octadecylamine(ODA) on the surface of graphene oxide(GO) to make the filler disperse better in the nanocomposites and have a strong interfacial interaction with polymer matrix.Poly(methyl methacrylate)(PMMA)/GO-ODA nanocomposite foams were obtained by solution blending and foamed using supercritical carbon dioxide(scCO_2).Compared to neat PMMA and PMMA/GO samples,the PMMA/GO-ODA nanocomposite foams showed improved cell structures with smaller size,higher cell density and more homogeneous distribution,which should be attributed to the heterogeneous nucleation caused by well-dispersed GO-ODA nanosheets.This work not only improved the compatibility and interfacial interaction of GO with polymer matrix but also indicated that the modified GO sheets can act as ideal filler to control the cell density,size and size distribution efficiently.  相似文献   

20.
采用超声波辅助反应技术,实现了甲苯二异氰酸酯(TDI)对氧化石墨烯(GO)的改性,成功制备了异氰酸酯共价改性的NCO@GO碳材料。采用原位聚合法制备出GO共价杂化水性聚氨酯,并与交联剂混合后得到聚氨酯(PU)电沉积涂料。利用红外光谱分析了GO改性前后及GO/PU电沉积树脂的特征官能团,用热失重研究了GO/PU电沉积树脂的热稳定性,X射线衍射研究了GO/PU电沉积树脂中GO层间效应,透射电子显微镜表征了GO/PU电沉积树脂的形态,电导率仪测试了漆膜的导电率,研究了氧化石墨烯含量对聚氨酯漆膜外观和性能的影响。结果表明,随着GO含量的增加,水性聚氨酯漆膜的导电性、光泽度、硬度和耐酸性表现出先增大后降低的规律。当石墨烯的质量分数为0.75%时,石墨烯在水性聚氨酯树脂及其乳液中具有较好的分散性,漆膜的导电性、光泽度、硬度和耐酸性等性能达到最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号