首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioactive glasses (BaG) can bind to human bone tissues and have been used in many biomedical applications for the last 30 years. However they usually are weak and brittle. On the other hand, composites that combine polymers and BaG are of particular interest, since they often show an excellent balance between stiffness and toughness. Bioactive glass-poly(vinyl alcohol) foams to be used in tissue engineering applications were previously developed by our group, using the sol-gel route. Since bioactive glass-polymer composite derived from the sol-gel process cannot be submitted to thermal treatments at high temperatures (above 400 degrees C), they usually have unreacted species that can cause cytotoxicity. This work reports a technique for stabilizing the sol-gel derived bioactive glass/poly(vinyl alcohol) hybrids by using glutaraldehyde (GA), NH(4)OH solutions and a blocking solution containing bovine serum albumin. PVA/BaG/GA hybrids were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM/EDX) analyses. Moreover, MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) biocompatibility and cytotoxicity assays were also conducted. The hybrids exhibited pore size varying from 80 to 820 mum. After treatments, no major changes in the pore structure were observed and high levels of cell viability were obtained.  相似文献   

2.
Micro porous hydroxyapatite (HAp) had drawn great attention in the field of tissue engineering due to its numerous applications such as tissue regeneration, dental, drug delivery, and adsorption and desorption of substances etc. The chemical synthesis of HAp is often faced with the high cost of starting materials and often lacks the presence of beneficial ions which can promote biological reactions. This paper examined a novel application of pig bone waste for the synthesis of HAp via heat treatment between 600 and 1000 °C. Thus synthesized powder was characterized by X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and Transmission electron microscopy (TEM). XRD results revealed the main characteristic peaks of single phase HAp powder, while the presence of various functional groups such as PO43?, CO32? and OH? corresponding to HAp were observed by FT-IR analysis. The elemental composition of as-synthesized HAp powder as observed by EDX showed the presence of Ca and P in addition to some beneficial metals such as Na, K, Mg and Si which plays vital roles in biological applications. SEM and TEM observation confirmed the microscopic sctructure of the as-synthesized HAp to be rod-like morphology with 38–52 nm in length. Porous HAp scaffold up to 65% porosity could be prepared using ammonium bicarbonate as pore forming agent. Therefore, bio-waste such as pig bones can be utilized in the synthesis of porous hydroxyapatite scaffold which can serve as an alternative for the conventional chemical method.  相似文献   

3.
Highly porous scaffold plays an important role in bone tissue engineering, which becomes a promising alternative approach for bone repair since its emergence. The objective of this work was to blend poly (є-caprolactone) (PCL) with chitosan (CS) for the purpose of preparation of porous scaffold. A simple unique method was employed under room-temperature condition to blend the two components together without separation of two phases. The reaction leads to formation of sponge-like porous 5, 10, 15 and 20 wt% CS composites. XRD, IR and SEM were used to determine components and morphology of the composites. DSC studies indicated that the miscibility of the two components. And pore volume fractures of composites were determined by a simple method in which a pycnometer was used. The results show that CS is successfully commingled into PCL matrix, and adding CS into PCL will not damage the crystalline structure of PCL. The composite shows no signs of phase separation and presents a unique porous structure under SEM observation. The porosity of composite increased with the increase of the content of CS in the composite. The highest porosity reached to 92% when CS content increased to 20 wt%. The mechanism of formation of this unique porous structure is also discussed.  相似文献   

4.
A new protocol, based on a modified replication method, is proposed to obtain bioactive glass scaffolds. The main feature of these samples, named "shell scaffolds", is their external surface that, like a compact and porous shell, provides both high permeability to fluids and mechanical support. In this work, two different scaffolds were prepared using the following slurry components: 59 % water, 29 % 45S5 Bioglass(?) and 12 % polyvinylic binder and 51 % water, 34 % 45S5 Bioglass(?), 10 % polyvinylic binder and 5 % polyethylene. All the proposed samples were characterized by a widespread microporosity and an interconnected macroporosity, with a total porosity of 80 % vol. After immersion in a simulated body fluid (SBF), the scaffolds showed strong ability to develop hydroxyapatite, enhanced by the high specific surface of the porous systems. Moreover preliminary biological evaluations suggested a promising role of the shell scaffolds for applications in bone tissue regeneration. As regards the mechanical behaviour, the shell scaffolds could be easily handled without damages, due to their resistant external surface. More specifically, they possessed suitable mechanical properties for bone regeneration, as proved by compression tests performed before and after immersion in SBF.  相似文献   

5.
In this work, several routes are described towards obtaining pure inorganic phases derived from Coralline officinallis red algae. The scanning electron microscopy studies have shown that it becomes possible not only to eliminate the undesired organic phase, but also to preserve or tailor the red algae typical microporosity. X-ray diffraction analysis was used to investigate the phase content of the red algae before and after performing the different treatment routes. Hydroxyapatite nanocrystallites were obtained after converting the coralline calcium carbonate skeleton by means of combining thermal and chemical routes. These results were confirmed by Fourier transform infra-red spectroscopic analysis. The processing routes herein described are very promising in order to design bioceramics of algae origin that might find useful applications as bone fillers and tissue engineering scaffolds.  相似文献   

6.
The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H&E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications.  相似文献   

7.
骨组织工程多孔支架材料性质及制备技术   总被引:2,自引:0,他引:2  
多孔性生物可降解支架的选择和制备是组织工程技术成功运用的关键。从骨架的材料要求、常用的骨架材料、骨架的制备技术等几个方面对组织工程和生物降解支架的研究进行了综述 ,并对该研究的前景进行了展望  相似文献   

8.
Biodegradable polymer scaffolds have played a significant role in wide range of tissue engineering application such as bone scaffolds since the last decade. The aim of this article is to provide the comprehensive overview of biocompatible and biodegradable polymer materials and composite materials with their advantages and drawbacks in the application of biomaterial scaffolds, furthermore the properties and degradation criteria of the biomaterials are discussed in this review.  相似文献   

9.
In the presented paper authors describe a method for bone scaffolds fabrication. The technique is based on the agglomeration of chitosan microspheres. The fabrication process is complex and consists of a few steps: chitosan spheres extrusion, scaffold formation by compression followed by the spheres agglomeration and bonding with cross-linking agent (STPP, sodium tripolyphosphate). The described method allows manufacturing of porous materials with controllable shape, pore size distribution and their interconnectivity. In this technique 3D scaffold porosity can be regulated by altering spheres diameter. Authors studied influence of cross-linker concentrations and time of cross-linking process on the scaffold morphology, mechanical properties, enzymatic degradation rate (in the presence of lysozyme) and human osteoblasts response. Surface morphology and topography were evaluated by SEM. Porosity and pore interconnectivity were observed via μCT scanning. Mechanical tests showed that chitosan scaffolds perform compression characteristic (Young Modulus) similar to natural bone. Cytotoxicity established by XTT assay confirmed that most of the developed composite materials do not show toxic properties. Osteoblast adhesion and morphology were analyzed by SEM and optical microscopy.  相似文献   

10.
王德平  黄文旵  周萘  姚爱华  宁佳  刘欣 《功能材料》2007,38(2):302-304,307
以硼硅酸盐玻璃粉为原料,采用有机泡沫浸渍工艺,制备了高孔隙率的网眼多孔支架.应用XRD、SEM及ICP-AES等对硼酸盐生物玻璃粉末在生理模拟液中的降解性能、生物活性等进行了测试分析.结果表明,硼硅酸盐生物玻璃的降解性和生物活性与材料的组成配比有关,因此,可以通过调整玻璃的组成有效控制材料的降解性和表面形成的羟基磷灰石晶体的形态.硼硅酸盐生物活性玻璃作为硬组织工程支架材料的研究具有重要的意义和广泛的应用前景.  相似文献   

11.
Skeletal loss and bone deficiencies are a major worldwide problem with over 600,000 procedures performed in the US alone annually, making bone one of the most transplanted tissues, second to blood only. Bone is a composite tissue composed of organic matrix, inorganic bone mineral, and water. Structurally bone is organized into two distinct types: trabecular (or cancellous) and cortical (or compact) bones. Trabecular bone is characterized by an extensive interconnected network of pores. Cortical bone is composed of tightly packed units, called osteons, oriented parallel along to the axis of the bone. While the majority of scaffolds attempt to replicate the structure of the trabecular bone, fewer attempts have been made to create scaffolds to mimic the structure of cortical bone. The aim of this study was to develop a technique to fabricate scaffolds that mimic the organization of an osteon, the structural unit of cortical bone. We successfully built a rotating stage for PGA fibers and utilized it for collecting electrospun nanofibers and creating scaffolds. Resulting scaffolds consisted of concentric layers of electrospun PLLA or gelatin/PLLA nanofibers wrapped around PGA microfiber core with diameters that ranged from 200 to 600 μm. Scaffolds were mineralized by incubation in 10× simulated body fluid, and scaffolds composed of 10%gelatin/PLLA had significantly higher amounts of calcium phosphate. The electrospun scaffolds also supported cellular attachment and proliferation of MC3T3 cells over the period of 28 days.  相似文献   

12.
利用改性生物玻璃粉体和胶原、透明质酸钠、磷酸丝氨酸等天然生物分子复合制备仿生型三维多孔骨组织工程支架材料,利用体外模拟实验结合SEM、FTIR、XRD 等测试方法对材料的显微结构、生物矿化性能进行了综合研究,研究表明该材料具有良好的孔隙结构,在模拟生理溶液(SBF)中反应24h即可在支架表面形成碳酸羟基磷灰石(HCA).  相似文献   

13.
Supercritical carbon dioxide processing of poly-L-lactide (PLLA)/hydroxyapatite (nHA) nanocomposites was investigated as a means to prepare foams suitable as scaffolds in bone tissue engineering applications. For given foaming parameters, addition of nHA to the PLLA gave reduced cell sizes and improved homogeneity in the size distribution, but did not significantly affect the degree of crystallinity, which remained of the order of 50 wt% in all the foams. The compressive modulus and strength were primarily influenced by the porosity and there was no significant reinforcement of the matrix by the nHA. The mechanical properties of the foams were nevertheless comparable with those of trabecular bone, and by adjusting the saturation pressure and depressurization rate it was possible to generate porosities of about 85 %, an interconnected morphology and cell diameters in the range 200-400 μm from PLLA containing 4.17 vol% nHA, satisfying established geometrical requirements for bone replacement scaffolds.  相似文献   

14.
Incorporation of hydroxyapatite (HA) with organic polymer in favor of composites would be used in biomaterial engineering. According to prior researches, because of its chemical similarity to natural bone and dental, this product could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite/chitosan composite material was prepared via in situ Hybridization route. The surface chemical characterization on the nanocomposite was evaluated by Fourier transformed infrared (FTIR) and X-ray diffraction (XRD). Surface topography, roughness and morphology of the samples were observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The characterization results confirmed homogeneity, interaction and integration between the HA and chitosan matrix. It was indicated that composite samples consist of homogeneous aggregations around 40–100 nm, in which many HA nanocrystals align along the chitosan molecules. HA grain gradually decreased in size when amount of chitosan increased from 0 to 6 g into 100 cc solution. It can be seen that by increasing chitosan, the aggregation of nanoparticles enhance and subsequently, improve the expected compatibility among HA filler and chitosan matrix. Furthermore, the mechanical compressive testing indicated that the synthesized composites have acceptable mechanical behavior for tissue substitution. The mechanistic of the biodegradable nanocomposite systems, their preparation and characterization for medical usage are strongly discussed.  相似文献   

15.
In this study nano-composite scaffolds to be used as bone grafts have been endowed with antibacterial properties owing to the presence of silver nanoparticles. The alginate/hydroxyapatite composite scaffolds were prepared by internal gelation followed by a freeze-drying procedure to obtain a porous structure. The nanoparticles were prepared in presence of a lactose modified-chitosan and this colloidal solution was adsorbed on the scaffolds by exploiting electrostatic interactions. The adsorption and release of the silver from the composite scaffold was measured by ICP-AES and spectrofluorimetry measurements. Micro-computed tomography analysis of the scaffolds showed a homogeneous porous structure with average pore sizes of 341.5 μm and porosity of 80 %. In vitro biological tests (MTS and killing kinetics assays) demonstrated that silver does not affect the ability of the scaffolds to promote osteoblasts proliferation and that at the same time it exerts a strong bactericidal effect against both Gram+ and Gram? bacterial strains. Overall, the combined results indicate that these biocompatible antimicrobial scaffolds possess ideal characteristics for tissue engineering applications.  相似文献   

16.
Hydroxyapatite (HAp) nanoparticles were synthesized from the co-precipitation reaction between calcium oxide from discarded egg shells and phosphoric acid in the absence and the presence of ovalbumin (OVA). 2-Amino-2-hydroxymethyl-propane-1,3-diol (tris-base) was used to control the pH during the co-precipitation (i.e., 7–9). The formation of HAp was confirmed by X-ray diffraction analysis, while both the Fourier-transform infrared spectroscopy and the thermogravimetric analysis confirmed the existence of OVA within the HAp–OVA particles. The crystallite sizes of the individual crystalline entities within the HAp and the HAp–OVA particles were approximated from the (002) reflection peaks by means of the Scherrer's equation. The average particle sizes of the HAp and the HAp–OVA particles were measured by particle size analysis. Transmission electron microscopy revealed that these particles were aggregates of rod-like HAp nanocrystals, whereas scanning electron microscopy revealed that these particles ultimately formed into larger aggregates. Lastly, the decrease in the pH during the precipitation process and the presence of OVA were responsible for the observed increase in the values of pore size, BET specific surface area, and pore volume of the resulting HAp particles.  相似文献   

17.
This study focused on the synthesis, characterization and cytocompatibility of a biodegradable polymer by the cross-linking from poly(ethylene glycol-co-lactide) dimethacrylate (PLEGDMA), polyethylene glycol diacrylate (PEGDA) and N-isopropylacrylamide, where PLEGDMA was synthesized by ring-opening oligomerization of poly(ethylene glycol) with different molecular weights (Mn = 400, 600, 1000, 2000 Da) and l-lactide using low toxic iron(III) acetylacetonate (Fe(acac)3) as the catalyst and subsequently being terminated with dimethacrylate. The product, PLEGDMA, was analyzed to confirm its chemistry using FTIR spectroscopy, 1H NMR spectra and gel permeation chromatography etc. The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability and cytotoxicity of the cross-linked product were evaluated by differential scanning calorimetry, tensile tests, contact angle measurements and cell cultures. The effects of reaction variables such as PEGDA content and reactants ratio were optimized to achieve a material with low glass transition temperature (Tg), high wettability and preferable mechanical characteristics. Using a tubular mould which has been patented in our group, a tubular scaffold with predetermined dimension and pattern was fabricated, which aims at guiding the growth and phenotype regulation of esophageal primary cells like fibroblast and smooth muscle cell towards fabricating tissue engineered esophagus in future.  相似文献   

18.
Novel polyurethane (PU) scaffold materials were designed and prepared on the basis of a coupling reaction between tetra-hydroxyl-terminated poly(butadiene-co-acrylonitrile) prepolymer (THTPBA) and poly(ethylene glycol) (PEG) via 1,6-hexamethylene diisocyanate as anchor molecule. The hydrophilicity, degradability, mechanical, and biomedical properties of the THTPBA/PEG PU materials were scrutinized by swelling and goniometry, FTIR and gravimetry methods, tensile stress–strain measurements and hemolysis, platelet activation, dynamic (erythrocyte aggregation) and static coagulation as well as MTT assays. The experimental results indicated that the hydrophilicity and mass loss were enhanced with increased concentrations and molecular weight (MW) of PEG. The degradation may be attributable to the cleavage of urethane or ester bonds in polymer chains. The in vitro blood compatibility and MTT cytotoxicity investigations elicited that the MW of PEG and mass ratios of THTPBA to PEG had important influence on the biomedical properties. The tensile stress–strain investigations showed that the highly crosslinked architecture offered high elastic modulus and mechanical strength. The PU scaffolds with proper component ratios and MW of PEG exhibited improved mechanical properties and biocompatibility as well as low toxicity, and can be employed as potential candidates for blood-contacting applications.  相似文献   

19.
Different fluoroquinolon-type antibiotics were conjugated to gelatin with the aim to synthesize biomacromolecules with antimicrobial properties. The covalent linkage of the antibiotic was performed by a radical process involving the residues in the side chains of gelatin able to undergo oxidative modifications. The conjugation of antibiotic moieties onto the protein structure was confirmed by FT-IR, UV–Vis, fluorescence, and calorimetric analyses. Biocompatibility tests were performed on human bone marrow mesenchymal stromal cells and the antibacterial properties of bioactive polymers were investigated by appropriate tests against Klebsiella pneumoniae and Escherichia coli. With regard to the tests conducted in the presence of E. coli, a minimum inhibitory concentration (MIC) ranging from 0.05 to 0.40 μg mL?1 was recorded, while in the presence of K. pneumoniae this concentration varies from 0.10 to 1.60 μg mL?1. In all the conjugates, the drug moieties retain their biological activity and the MIC values are lower than the resistance parameters of fluoroquinolon-type antibiotics versus Enterobacteriacae. The collected data suggest a broad range of applications, from biomedical to pharmaceutical and food science for all conjugates.  相似文献   

20.
While previous research on polycaprolactone (PCL) and polyethylene glycol (PEG) triblock copolymers has focused on their use as hydrogels or with conventional scaffold fabrication methods, this work concentrates on producing viable photocurable resins from synthesized triblocks for use in a layer-by-layer 3D printer. After successful synthesis of PCL-PEG-PCL and PCL-PEG-PCL-diacrylate triblocks, they were combined with (hydroxyethyl)methacrylated polyethylene glycol (PEG-HEMA) and used as biomaterials in a dynamic masking 3D printing system to fabricate porous scaffolds. Diacrylation of the polymer (PCL-PEG-PCL-DA) revealed a substantial increase in mechanical strength and resulting compound resolved the re-dissolving issue significantly during the 3D printing process. Degradation tests were carried out by incubation in phosphate-buffered saline, and both biomaterials demonstrated their degradation resistance with steady pH levels and mass loss plateauing at 20% over a sixty day timeframe. Preliminary MG63 cell culture tests on the cross-linked 3D porous structures showed no significant cytotoxicity and MTT assay data verified cell proliferation on the photocured samples after three days. As a result, end-capping PCL-PEG-PCL with acrylates demonstrated advantages over PCL-PEG-PCL while keeping similar performance in degradation and biocompatibility. Overall results from this work demonstrate the suitability of the novel triblocks for use as biomaterials in tissue engineering scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号