首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This review article introduces the preparation methodologies and the microstructural characteristics of semiconductor thin films, including SnO2 thin films, Au/Ge bilayer films, and Pd-Ge alloy thin films, and metal oxides, including SnO, SnO2, Mn2O3 and Mn3O4 nanocrystals which can be in the form of nanoparticles, nanowires, nanorods, and nanofractals. Firstly, the preparation methodologies and the microstructural characteristics of tin oxides have been investigated in detail and described in Section 2. Secondly, the crystallization of amorphous Ge, and the formation of nanocrystals and compounds developed with improved micro- and nanostructured features are described in Section 3. Thirdly, a novel selective synthesis route for various morphologies of manganese oxides nanocrystals, including nanoparticles, nanorods and nanofractals, and their unique microstructural characteristics are presented in Section 4. Intricate fundamental properties of manganese oxides nanocrystals are studied in detail. To sum up, it is expected that the fabrication methodologies developed and the knowledge of microstructural evolution gained in semiconductor thin films, including SnO2 thin films, Au/Ge bilayer films, and Pd-Ge alloy thin films, and metal oxides, including SnO, SnO2, Mn2O3 and Mn3O4 nanocrystals in the forms of nanoparticles, nanowires, nanorods, and nanofractals, will provide an important fundamental basis underpinning further interdisciplinary (physics, chemistry and materials science) research in this field leading to promising exciting opportunities for future technological applications involving these oxide and thin film materials.  相似文献   

2.
The fractal and dense branching morphologies of amorphous germanium films in contact with palladium have been investigated by TEM. The experimental results suggest that the production of fractal morphology in Pd/a-Ge bilayer films was easier than that in a-Ge/Pd bilayer films. An island-like fractal morphology can be formed at the step and crevice hole areas annealed at higher temperatures. It is difficult for co-evaporated Pd-Ge films to realize fractal morphology. The formation of fractal morphology can be explained by a RSN model. The SAED patterns suggest that the dense branching morphology cannot be completely demonstrated by the Pd, Ge, Pa2Ge, PdGe and Pd25Ge9, maybe it is a new phase.  相似文献   

3.
Thermal interaction of indium phosphide (InP) bulk compound semiconductor with thin gold metal films was investigated in the course of the present work. The interaction of the InP/Au system resulted in a pattern showing fractal dimensions. The temperature dependence of the fractal parameters was investigated in a broad temperature range from 200 to 600 °C. No significant temperature dependence of the fractal dimension was observed.The same calculations will be presented for Au/InP and AuPd/InP systems. Our calculations show that the Pd-based contacts have a different behaviour than AuGe metallization where a strong temperature dependence of the fractal number was observed earlier.Another topology measure, the structural entropy is also calculated for the samples. The structural entropy is usually applied for determining the type of the localization of charge distributions, but it can also be used for generalized charges, such as the lightness of the pixels of an electron microscopy picture.  相似文献   

4.
以油酸为有机配体,采用两相方法合成了油溶性的超小尺寸纳米晶体纳米ZrO2(nano ZrO2),并对nano ZrO2表面包覆的油酸改性使纳米晶体与聚酰胺酸(PAA)接枝,通过旋膜法热亚胺化后形成nano ZrO2/聚酰亚胺(PI)复合超薄膜。利用TEM、XRD、FTIR和SEM等对nano ZrO2及nano ZrO2/PI复合超薄膜进行表征,并对nano ZrO2/PI复合超薄膜的介电性能进行了探究。结果显示,nano ZrO2尺寸均一(5.0 nm左右),为锐钛矿晶型,其晶体结构和尺寸不受改性接枝影响。nano ZrO2在复合超薄膜中分散良好。电学研究表明,复合超薄膜的介电性能受nano ZrO2与PAA质量比及制膜热亚胺化温度的影响。当PAA∶ZrO2质量比为2∶3、热亚胺化温度为320℃时,介电常数达到最大,几乎是纯PI薄膜的2倍。两相法-改性接枝-热亚胺化制备PI复合超薄膜的方法简单高效,能够避免无机粒子在PI基体内的团聚并提高介电性能,对于PI基复合薄膜的制备、应用及推广具有重要意义。  相似文献   

5.
The interdiffusion and intermetallic compound formation of Au/Nb bilayer thin films annealed at 200–400 °C have been investigated. The bilayer thin films were prepared by electron beam deposition. The Nb film was 50 nm thick and the Au film was 50–200 nm thick. The interdiffusion of annealed specimens was examined by measuring the electrical resistance and depth-composition profile and by transmission electron microscopy. Interdiffusion between the thin films was detected at temperatures above 325 °C in a vacuum of 10-4 Pa. The intermetallic compound Au2Nb3 and other unknown phases form during annealing at over 400 °C. The apparent diffusion constants, determined from the penetration depth for annealing at 350 °C, are 3.5 × 10−15 m2 s−1 for Nb in Au and 8.6 × 1107minus;15 m2 s−1 for Au in Nb. The Au surface of the bilayer films becomes uneven after annealing at over 400 °C due to the reaction.  相似文献   

6.
Compositionally uniform Si0.5Ge0.5 bulk crystals were grown by the traveling liquidus-zone method which we developed for alloy crystal growth. Grown crystals were characterized as substrates for compressive-strained Ge thin films for high mobility p-channels of complementary metal oxide semiconductor transistors. Compositional uniformity was excellent and crystallinity was also excellent for 10 mm diameter crystals. However, crystallinity was degraded for 30 mm diameter crystals although compositional uniformity was excellent. Transmission electron microscope (TEM) observation showed high dislocation density at the interface between a Si seed and a grown crystal due to lattice mismatch. However, the dislocation density decreased as crystal growth proceeded. High quality 30 mm diameter crystals will be grown when the single crystal length is extended judging from TEM results. In this paper, we report on the growth and characterization of Si0.5Ge0.5 crystals as substrates for strained Ge thin films.  相似文献   

7.
采用离子束溅射方法在Si衬底上制备Si/Ge多层膜,通过改变生长温度、溅射速率等因素得到一系列Si/Ge多层膜样品;通过X射线衍射、Raman散射等表征方法研究薄膜结构与生长条件的关系。在小束流(10mA)、室温条件下制备出界面清晰、周期完整的Si/Ge多层膜。  相似文献   

8.
P. Caldelas  M.J.M. Gomes  A.R. Ramos  S. Yerci 《Vacuum》2008,82(12):1466-1469
Germanium (Ge) nanocrystals (NCs) embedded in alumina thin films were produced by deposition on fused silica and silicon (111) substrates using radio-frequency (RF) magnetron sputtering. The films were characterised by both Raman and X-ray diffraction (XRD) spectroscopy. The deposition conditions were optimised in order to obtain crystalline Ge nanoparticles. In as-deposited films, the typical NC size was ∼3 nm as estimated by means of X-ray diffraction. Raman spectra taken from as-deposited films revealed both amorphous and crystalline semiconductor phases. Annealing was performed in order to improve the crystallinity of the semiconductor phase in the films. After a 1 h annealing at 800 °C the mean NC size estimated from the XRD data and Raman spectra increased to ∼6.5 nm. An increase in the crystallinity of the Ge phase was also confirmed by the Raman spectroscopy data.  相似文献   

9.
N. Naseri  O. Akhavan 《Thin solid films》2010,518(8):2250-5907
In this investigation, the effect of gold nanocrystals on the electrochromical properties of sol-gel Au doped WO3 thin films has been studied. The Au-WO3 thin films were dip-coated on both glass and indium tin oxide coated conducting glass substrates with various gold concentrations of 0, 3.2 and 6.4 mol%. Optical properties of the samples were studied by UV-visible spectrophotometry in a range of 300-1100 nm. The optical density spectra of the films showed the formation of gold nanoparticles in the films. The optical bandgap energy of Au-WO3 films decreased with increasing the Au concentration. Crystalline structure of the doped films was investigated by X-ray diffractometry, which indicated formation of gold nanocrystals in amorphous WO3 thin films. X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of the samples. XPS analysis indicated the presence of gold in metallic state and the formation of stoichiometric WO3. The electrochromic properties of the Au-WO3 samples were also characterized using lithium-based electrolyte. It was found that doping of Au nanocrystals in WO3 thin films improved the coloration time of the layer. In addition, it was shown that variation of Au concentration led to color change in the colored state of the Au-WO3 thin films.  相似文献   

10.
The current direction in the evolution of 2D semiconductor nanocrystals involves the combination of metal and semiconductor components to form new nanoengineered materials called nano‐heteroplatelets. This Review covers different heterostructure architectures that can be applied to cadmium chalcogenide nanoplatelets, including variously shaped shell, metal nanoparticle decoration, and doped and alloy systems. Here, for the first time a complete classification of nano‐heteroplatelet types is provided with recommended notations and a systematization of the existing knowledge and experience concerning heterostructure formation techniques, addressing the morphology, optoelectronic and magnetic properties, and novel features of different heterostructures. This Review is also devoted to possible applications of these heterostructures and of one‐component nanoplatelets in multiple fields, including light‐emitting devices and biological imaging.  相似文献   

11.
We present results from an experiment to develop bilayer metallic films of Al and Au as superconducting transition edge thermometers for the detection of third sound waves in thin superfluid 4He films. We compare transition edge data for such an Al/Au thermometer to that for a pure Zn thermometer and document its utility for third sound detection.  相似文献   

12.
Ge nanocrystals (6–9?nm) embedded between amorphous Al2O3 films were produced in a cluster beam deposition system. The microstructural evaluation and compressive stress experienced by the Ge nanocrystals due to the presence of an oxide layer, nanoparticle size distribution and their changes due to thermal annealing were studied by X-ray diffraction, HRTEM and Raman spectroscopy. Spectroscopic ellipsometry was used to measure the dielectric functions of the deposited films. A multilayer model based on the effective medium approximation was used to analyze the variation of percentage of defects and the extent of disorder with particle size of the nanocrystals. The correlation between the microstructural characteristics and optical properties was established by evaluating standard sum rules. Germanium nanocrystals show visible photo luminescence at room temperature around 3.0 and 2.8?eV. However, a peak shift towards lower energies with increasing particle size due to thermal annealing was not detected. The experimentally observed luminescence is presumably originated due to the presence of oxide-related defect centers at the interface between the germanium nanocrystals and the embedded oxide layers.  相似文献   

13.
Ultra-large-scale syntheses of monodisperse nanocrystals   总被引:8,自引:0,他引:8  
The development of nanocrystals has been intensively pursued, not only for their fundamental scientific interest, but also for many technological applications. The synthesis of monodisperse nanocrystals (size variation <5%) is of key importance, because the properties of these nanocrystals depend strongly on their dimensions. For example, the colour sharpness of semiconductor nanocrystal-based optical devices is strongly dependent on the uniformity of the nanocrystals, and monodisperse magnetic nanocrystals are critical for the next-generation multi-terabit magnetic storage media. For these monodisperse nanocrystals to be used, an economical mass-production method needs to be developed. Unfortunately, however, in most syntheses reported so far, only sub-gram quantities of monodisperse nanocrystals were produced. Uniform-sized nanocrystals of CdSe (refs 10,11) and Au (refs 12,13) have been produced using colloidal chemical synthetic procedures. In addition, monodisperse magnetic nanocrystals such as Fe (refs 14,15), Co (refs 16-18), gamma-Fe(2)O(3) (refs 19,20), and Fe(3)O(4) (refs 21,22) have been synthesized by using various synthetic methods. Here, we report on the ultra-large-scale synthesis of monodisperse nanocrystals using inexpensive and non-toxic metal salts as reactants. We were able to synthesize as much as 40 g of monodisperse nanocrystals in a single reaction, without a size-sorting process. Moreover, the particle size could be controlled simply by varying the experimental conditions. The current synthetic procedure is very general and nanocrystals of many transition metal oxides were successfully synthesized using a very similar procedure.  相似文献   

14.
Wang W  Yang G  Chen Z  Lu H  Zhou Y  Yang G  Kong X 《Applied optics》2003,42(27):5591-5595
Composite thin films Au:BaTiO3, comprising nanometer-sized gold particles embedded in barium titanate matrices, were synthesized on MgO (100) substrates with the pulsed laser deposition technique. The nanostructure of the films and the size distributions of the Au particles were analyzed by high-resolution transmission electron microscopy. Crystal lattice fringes from the Au nanocrystals and the BaTiO3 matrices were observed. The nonlinear optical properties of the Au:BaTiO3 films were measured with the z-scan method at a wavelength of 532 nm, which was closed to the surface plasmon resonance of nanoscale Au particles. The features of the closed-aperture z-scan transmittance curves were affected by the ratio, which increased greatly at a high metal concentration, of the imaginary part to the real part of the third-order nonlinear susceptibility chi(3).  相似文献   

15.
The thermal stability of Ti/Pt/Au Schottky contacts on n-GaAs with Ti films 0–60 nm is investigated. The contacts with Ti films as small as 10 nm remain thermally stable with annealing up to 400°C. The changes induced by thermal treatment in the electrical characteristics of the contacts are correlated with the Rutherford backscattering and microscopic analysis of the annealed samples. It shows profuse interdiffusion and interfacial reaction with 300°C anneal for the GaAs/Pt/Au system. It has been found that introducing the Ti film between GaAs and Pt/Au, the interdiffusion of Pt and Au is also prevented. These results are useful for reducing the gate metallisation resistance of metal semiconductor field effect transistors.  相似文献   

16.
Cu2ZnSnS4纳米颗粒及其薄膜的制备与表征   总被引:1,自引:0,他引:1  
采用热注入法,在油胺(OLA)中合成出Cu2ZnSnS4(CZTS)纳米颗粒,并在玻璃衬底上制备了薄膜,研究了不同合成温度对纳米颗粒生成的影响.通过X射线衍射仪、拉曼光谱仪、透射电子显微镜、扫描电子显微镜、紫外可见分光光度计对所得纳米晶材料的结构与成分、颗粒大小与形貌、光吸收谱进行了测试分析.研究结果表明:采用热注入法的最佳合成温度在260℃左右,该温度下生成的多晶CZTS纳米颗粒尺寸约10 nm,分散性良好,光学禁带宽度约1.5 eV.  相似文献   

17.
X. Lu  T.J. Balk  R. Spolenak  E. Arzt 《Thin solid films》2007,515(18):7122-7126
Nanoporous Au can be formed by dealloying Au-Ag alloys and, depending on the initial alloy composition, produce a variety of microstructural features. We investigated a wide compositional range and found three regimes, based on initial Au content, that yield varying degrees of dealloying in thin films. Between 22 and 26 at.% Au, dealloying produces nearly pure Au with an open nanoporous structure. However, above 36 at.% Au, only the grain boundaries dealloy, leaving islands of retained Au-Ag alloy. For intermediate compositions, a transitional microstructure results, with final Ag concentration ranging from 50 at.% down to 4 at.%. Film cracking was observed after dealloying, and lower initial Au content correlated with a higher degree of cracking and a higher pore fraction.  相似文献   

18.
金属氧化物薄膜在很多领域有潜在的用途,然而,具有纳米结构的薄膜合成仍然是一大挑战。文章介绍了一种气体一液体界面反应和高温热处理制备氧化锌薄膜的方法,讨论了不同前驱体及表面活性剂PVP的使用对ZnO薄膜形貌的影响,结果表明,界面反应不仅是一种方便、绿色、低成本的薄膜制备方法,而且也是具有精细纳米次级结构可行的合成方法,并有可能成为金属氧化物薄膜制备的新方法。  相似文献   

19.
By thermal deposition in vacuum of very thin films (thickness between 1500 and 8000 Å) of the amorphous semiconductor Te43Se50Sn7 on a metallic counterelectrode (Au, Cr) we have prepared MSM structures. The top contact was made by means of a tungsten alloy needle. The I–V characteristics and the observed switching effects are discussed on the hypothesis of a purely electronic model. The forming processes depend on the deposition conditions of the semiconductor film; they are described in detail. The thermal dependence of these processes is obvious in all cases.  相似文献   

20.
Microstructure and composition significantly influence the physical properties of thin films. Therefore, these can be adapted to enhance the functionality of thin films for practical applications. Herein, the anomalous microstructural evolution of sputtered GeO2 thin films based on postdepositional heat treatments is reported. Temperature-dependent microstructural variations are investigated systematically via a combinatorial postdepositional heat treatment employing a natural thermal gradient in a tube furnace. Heat treatment under an oxidizing atmosphere results in a transition from the amorphous phase to the quartz phase, and subsequent heat treatments under a reducing atmosphere cause H2O-incorporated chemical reactions. Hence, these conditions create unique microstructural features and yield optical transmittance variations in the GeO2 thin films. The phase transition induces the formation of spherulitic hexagonal GeO2 crystallites, and further increase in the temperature promotes the agglomeration of crystallites in the amorphous matrix. The incorporation of H2O results in the growth of the microstructure, and the chemical reduction to Ge metal begins to generate small granules from the boundary of the microstructures. The experimental results and proposed mechanisms presented herein for the microstructural and compositional changes serve as references for designing the physical properties of thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号