首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a reliability model for the electrical subassemblies of geared wind turbine systems with induction generators. The model is derived considering the failure of main subassemblies and their parameters are calculated. A productivity comparison is performed between the selected wind turbine systems including reliability issues.Two methods of modification for variable-speed wind turbines with Doubly Fed Induction Generators (DFIG) to improve their availability are finally suggested.  相似文献   

2.
Frequent failures of power converters affect the availability of wind turbines and cause considerable maintenance costs. To enhance the reliability of power converters in wind turbines, the prevailing causes and modes of failures have to be identified. This publication contributes to root-cause analysis of the power-converter failures in wind turbines from a statistical point of view. For this purpose, the failure behavior of power-converters is modeled via lifetime models as well as repairable-system models. By means of regression models, covariates are incorporated, including both design-related and site-specific covariates. The analysis is based on a worldwide extensive field-data collection covering more than 9000 turbines, including different turbine designs, sites, and ages. The results obtained by means of the applied regression models indicate that the location of the power converter within the turbine, the cooling system, the converter rated power, the DC-link voltage, the IGBT-module manufacturer, and the commissioning date of the turbine as design-related covariates have a significant effect on the phase-module failure behavior and with that on converter reliability. Among the site-specific covariates, the analysis results confirm humidity as a likely significant driver of failures.  相似文献   

3.
Different configurations of gearbox, generator and power converter exist for offshore wind turbines. This paper investigated the performance of four prominent drive train configurations over a range of sites distinguished by their distance to shore. Failure rate data from onshore and offshore wind turbine populations was used where available or systematically estimated where no data was available. This was inputted along with repair resource requirements to an offshore accessibility and operation and maintenance model to calculate availability and operation and maintenance costs for a baseline wind farm consisting of 100 turbines. The results predicted that turbines with a permanent magnet generator and a fully rated power converter will have a higher availability and lower operation and maintenance costs than turbines with doubly fed induction generators. This held true for all sites in this analysis. It was also predicted that in turbines with a permanent magnet generator, the direct drive configuration has the highest availability and lowest operation and maintenance costs followed by the turbines with two‐stage and three‐stage gearboxes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Determining and understanding offshore wind turbine failure rates and resource requirement for repair are vital for modelling and reducing O&M costs and in turn reducing the cost of energy. While few offshore failure rates have been published in the past even less details on resource requirement for repair exist in the public domain. Based on ~350 offshore wind turbines throughout Europe this paper provides failure rates for the overall wind turbine and its sub‐assemblies. It also provides failure rates by year of operation, cost category and failure modes for the components/sub‐assemblies that are the highest contributor to the overall failure rate. Repair times, average repair costs and average number of technicians required for repair are also detailed in this paper. An onshore to offshore failure rate comparison is carried out for generators and converters based on this analysis and an analysis carried out in a past publication. The results of this paper will contribute to offshore wind O&M cost and resource modelling and aid in better decision making for O&M planners and managers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that he variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators.  相似文献   

6.
Modern wind turbines are complex aerodynamic, mechanical and electrical machines incorporating sophisticated control systems. Wind turbines have been erected in increasing numbers in Europe, the USA and elsewhere. In Europe, Germany and Denmark have played a particularly prominent part in developing the technology, and both countries have installed large numbers of turbines. This article is concerned with understanding the historic reliability of modern wind turbines. The prime objective of the work is to extract information from existing data so that the reliability of large wind turbines can be predicted, particularly when installed offshore in the future. The article uses data collected from the Windstats survey to analyse the reliability of wind turbine components from historic German and Danish data. Windstats data have characteristics common to practical reliability surveys; for example, the number of failures is collected for each interval but the number of turbines varies in each interval. In this article, the authors use reliability analysis methods which are not only applicable to wind turbines but relate to any repairable system. Particular care is taken to compare results from the two populations to consider the validity of the data. The main purpose of the article is to discuss the practical methods of predicting large‐wind‐turbine reliability using grouped survey data from Windstats and to show how turbine design, turbine configuration, time, weather and possibly maintenance can affect the extracted results. Copyright © 2006 John Wiley &Sons, Ltd.  相似文献   

7.
为准确评估浮式海上风电机组结构服役安全性,提出一种基于多失效模式的可靠性评估方法。以美国国家可再生能源实验室(NREL)研制的5 MW浮式风力发电机组OC3 Hywind为目标模型,根据不同海况下浮式风电机组结构耦合动力响应分析结果,分析关键结构的不同失效模式,最后基于多失效模式的可靠性评估方法计算整体系统可靠性。结果表明,考虑串联系统,基于多失效模式可靠性分析方法得到的海上浮式风电机组结构整体的失效概率远高于单一模式失效概率,采用此方式评估结构可靠度更加安全准确。  相似文献   

8.
This paper deals with the power generation efficiency analysis of a proposed offshore wind farm topology, consisting of a SLPC (single large power converter) that simultaneously controls a group of generators. This common converter can operate at a VF (variable frequency) or at a CF (constant frequency). The results are compared with the conventional onshore wind farm scheme, where individual power converters are connected to each turbine, guaranteeing maximum power generation for the entire wind farm. A methodology to analyze different wind speed and direction scenarios, and to compute the optimal electrical frequency for each one, is presented and applied to different case studies depending on the wind farm size. In order to obtain more realistic values of wind speeds, the wake effect amongst wind turbines is considered. A wake model considering single, partial and multiple wakes inside a wind farm and taking into account different wind directions, is presented. Both wind farm topologies are analyzed by means of simulations, taking into account both wind speed variability in wind farms and the number of wind turbines. The possible resulting benefits of simplifying the MPCs (multiple power converters) of each turbine, namely saving costs, reducing losses and maintenance and increasing the reliability of the system, are analyzed, focusing on the total power extraction. The SLPC-VF scheme is also compared with a CF scheme SLPC-CF, and it is shown that a significant power increase of more than 33% can be obtained with SLPC-VF.  相似文献   

9.
S. Faulstich  B. Hahn  P. J. Tavner 《风能》2011,14(3):327-337
While the performance and the efficiency of wind turbines and their energy yields have been improved with time, their reliability still needs improvement, particularly when considering their deployment offshore. IWES has been gathering operational experience from wind turbines since 1989, being involved in different projects dealing with the topic of availability and reliability. This paper draws statistical data from Germany's ‘250 MW Wind’ programme, evaluated by IWES. The prime objective of the survey was to extract information about the reliability characteristics of wind turbines. The main purpose of this paper is to discuss the frequency of failures and duration of downtimes for different wind turbine subassemblies based on existing onshore experience and point out the likely outcomes when turbines are deployed offshore. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Today, many countries are integrating large amount of wind energy into the grid and many more are expected to follow. The expected increase of wind energy integration is therefore a concern particularly to transmission grid operators. Based on the past experience, some of the relevant concerns when connecting significant amount of wind energy into the existing grid are: fault ride through requirement to keep wind turbines on the grid during faults and wind turbines have to provide ancillary services like voltage and frequency control with particular regard to island operation.While there are still a number of wind turbines based on fixed speed induction generators (FSIG) currently running, majority of wind turbines that are planned to be erected are of variable speed configurations. The reason for this is that FSIG are not capable of addressing the concern mentioned above. Thus, existing researches in wind turbines are now widely directed into variable speed configurations. This is because apart from optimum energy capture and reduction of mechanical stress, preference of these types is also due to the fact that it can support the network such as its reactive power and frequency regulation. Variable wind turbines are doubly fed induction generator wind turbines and full converters wind turbines which are based on synchronous or induction generators.This paper describes the steady state and dynamic models and control strategies of wind turbine generators. The dynamic models are presented in the dq frame of reference. Different control strategies in the generator side converter and in the grid side converter for fault ride through requirement and active power/frequency and reactive/voltage control are presented for variable speed wind turbines.  相似文献   

11.
This paper is based on continuous measurements of voltages and currents from three wind farms for a period of 1 year, and the focus is on voltage dips. The purpose is to get an overview of the characteristics and rate of voltage dips, which occur in the wind farms and to study the wind turbine responses to voltage dips. In each of the wind farms there is one measurement point at a single wind turbine and one for measuring the contribution from the whole wind farm. Different wind turbine technologies are used in the three wind farms; fixed speed turbines with directly connected induction generators in wind farm 1 and variable speed turbines with power electronics converters and synchronous generators in wind farms 2 and 3. Voltage dips are evaluated according to the standard EN 50160, by considering the durations and residual voltages of the positive sequence component voltage dips. Some examples of voltage dip events with corresponding responses in active and reactive power are shown and discussed with a view to the different technologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Reliability is critical to the design, operation, maintenance, and performance assessment and improvement of wind turbines (WTs). This paper systematically reviews publicly available reliability data for both onshore and offshore WTs and investigates the impacts of reliability on the cost of energy. WT failure rates and downtimes, broken down by subassembly, are collated from 18 publicly available databases including over 18 000 WTs, corresponding to over 90 000 turbine‐years. The data are classified based on the types of data collected (failure rate and stop rate) and by onshore and offshore populations. A comprehensive analysis is performed to investigate WT subassembly reliability data variations, identify critical subassemblies, compare onshore and offshore WT reliability, and understand possible sources of uncertainty. Large variations in both failure rates and downtimes are observed, and the skew in failure rate distribution implies that large databases with low failure rates, despite their diverse populations, are less uncertain than more targeted surveys, which are easily skewed by WT type failures. A model is presented to evaluate the levelised cost of energy as a function of WT failure rates and downtimes. A numerical study proves a strong and nonlinear relationship between WT reliability and operation and maintenance expenditure as well as annual energy production. Together with the cost analysis model, the findings can help WT operators identify the optimal degree of reliability improvement to minimise the levelised cost of energy.  相似文献   

13.
This paper investigates an analytical approach for the reliability modeling of doubly fed induction generator (DFIG) wind turbines. At present, to the best of the authors’ knowledge, wind speed and wind turbine generator outage have not been addressed simultaneously. In this paper, a novel methodology based on the Weibull- Markov method is proposed for evaluating the probabilistic reliability of the bulk electric power systems, including DFIG wind turbines, considering wind speed and wind turbine generator outage. The proposed model is presented in terms of appropriate wind speed modeling as well as capacity outage probability table (COPT), considering component failures of the wind turbine generators. Based on the proposed method, the COPT of the wind farm has been developed and utilized on the IEEE RBTS to estimate the well-known reliability and sensitive indices. The simulation results reveal the importance of inclusion of wind turbine generator outage as well as wind speed in the reliability assessment of the wind farms. Moreover, the proposed method reduces the complexity of using analytical methods and provides an accurate reliability model for the wind turbines. Furthermore, several case studies are considered to demonstrate the effectiveness of the proposed method in practical applications.  相似文献   

14.
The wind power industry has expanded greatly during the past few years, has served a growing market, and has spawned the development of larger wind turbines. Different designs and technical advances now make it possible to erect wind turbines offshore. The fast expansion of the wind power market faces some problems. The new designs are not always fully tested, and the designed 20-year lifetime is typically never achieved before the next generation of turbines are erected. This paper presents results from an investigation of failure statistics from four sources, i.e., two separate sources from Sweden, one from Finland, and one from Germany. Statistics reveal reliability performance of the different components within the wind turbine. The gearbox is the most critical, because downtime per failure is high compared to the other components. The statistical data for larger turbines also show trends toward higher, ever-increasing failure frequency when compared to small turbines, which have a decreasing failure rate over the operational years  相似文献   

15.
This research investigates the prediction of failure and remaining useful life (RUL) of gearboxes for modern multi‐megawatt wind turbines. Failure and RUL are predicted through the use of machine learning techniques and large amounts of labelled wind turbine supervisory control and data acquisition (SCADA) and vibration data. The novelty of this work stems from unprecedented access to one of the world's largest wind turbine operational and reliability databases, containing thousands of turbine gearbox failure examples and complete SCADA and vibration data in the build up to those failures. Through access to that data, this paper is unique in having enough failure examples and data to draw the conclusions detailed in the remainder of this abstract. This paper shows that artificial neural networks provide the most accurate failure and RUL prediction out of three machine learning techniques trialled. This work also demonstrates that SCADA data can be used to predict failure up to a month before it occurs, and high frequency vibration data can be used to extend that accurate prediction capability to 5 to 6 months before failure. This paper demonstrates that two class neural networks can correctly predict gearbox failures between 72.5% and 75% of the time depending on the failure mode when trained with SCADA data and 100% of the time when trained with vibration data. Data trends in the build up to failure and weighting of the SCADA data inputs are also provided. Lastly, this work shows how multi‐class neural networks demonstrate more potential in predicting gearbox failure when trained with vibration data as opposed to training with SCADA data.  相似文献   

16.
Babak Badrzadeh 《风能》2011,14(3):425-448
This paper investigates the possibilities of viable power electronics converters, semiconductor switching devices and electric machines for 10 MW variable‐speed wind turbine generators. The maximum rated power of existing wind turbine configurations is in the range of 6 MW. The proposed alternatives are compared against several technical and economical factors, and their advantages over the present wind turbines are highlighted. A comprehensive performance comparison of modern power semiconductor devices, their electrical characteristics and the key differentiators among them are presented. The power electronics converters considered include all commercially available multilevel voltage source and current source converters as well as the opportunities offered by power electronics building block‐based design. The factors used for the comparison include the converter power range, capacitor voltage balancing, common mode voltage and current, electromagnetic interference emissions, fault ride‐through capability, reliability, footprint, harmonic performance, efficiency and losses, component count, risk of torsional vibration by the harmonics and inter‐harmonics, complexity, ease of back‐to‐back operation and filtering requirements. For the electric machines, this study concentrates on high‐temperature superconducting machines, multi‐phase induction machines and permanent magnet synchronous machines. These machines are compared against existing wind generator technologies in terms of their power range, torque density, efficiency, fault ride‐through capability, reliability, footprint, harmonic performance, ease of fault detection, excitation control, noise and vibration signature, oscillation damping, gearbox requirement, cost and the size of the associated converter. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper addresses the optimal operation of an offshore wind farms (OWF), consisting of 120 wind turbines with doubly fed induction generators (DFIG) and a high voltage dc (HVdc) connection with the grid, using line commutated converters (LCC). For an optimal operation of the OWF, the distribution of the reactive power set points throughout the wind turbine generators must be optimal, in order to achieve minimum losses within the wind farm and the HVdc transmission system and therefore obtain the maximum production output. To accomplish this objective, an optimization formulation has been proposed which includes a complete model of the OWF and the LCC-HVdc, and the study of two different configurations. Simulation results show the advantages of using the reactive capability of the DFIG to achieve the optimal operation of the OWF.  相似文献   

19.
A review of current progress in Condition Monitoring (CM) of wind turbine gearboxes and generators is presented, as an input to the design of a new continuous CM system with automated warnings based on a combination of vibrational and Acoustic Emission (AE) analysis. For wind turbines, existing reportage on vibrational monitoring is restricted to a few case histories whilst data on AE is even scarcer. In contrast, this paper presents combined vibration and AE monitoring performed over a continuous period of 5 days on a wind turbine. The vibrational and AE signatures for a healthy wind turbine gearbox and generator were obtained as a function of wind speed and turbine power, for the full normal range of these operational variables. i.e. 5–25 m/s and 0–300 kW respectively. The signatures have been determined as a vital pre-requisite for the identification of abnormal signatures attributable to shaft and gearbox defects. Worst-case standard deviations have been calculated for the sensor data. These standard deviations determine the minimum defect signal that could be detected within the defined time interval without false alarms in an automated warning system.  相似文献   

20.
This paper proposes equivalent circuits and a method for the estimation of the peak transient voltages at generator terminals in wind turbines equipped with back‐to‐back converters. Equivalent circuits as well as a way of phase‐to‐phase and phase‐to‐ground voltages estimation in back‐to‐back converter are presented. Proposed theoretical background is well confirmed by small‐scale measurements. It is shown and proven that phase‐to‐ground voltages represent a dominating threat for the wind turbine generators insulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号