共查询到19条相似文献,搜索用时 46 毫秒
1.
建立塑料饮料瓶物证快速准确检验鉴别方法。利用差分拉曼光谱法检验42个塑料饮料瓶样品,优化积分时间并进行重现性检验。在40 s最优积分时间条件下采集光谱,任选41个样品作为建立模型的数据集,剩余样品作为盲样,对41个样品材质初步定性分为聚对苯二甲酸乙二醇酯(PET)和聚乙烯(PE)两类。建立基于系统聚类(HCA)、多层感知器神经网络和径向基神经网络的PET样品鉴别模型,确定最优鉴别模型及样品最佳分类。结果表明,系统聚类-多层感知器神经网络为最优鉴别模型,PET样品最佳分类为2类。差分拉曼光谱法结合系统聚类和神经网络可实现塑料饮料瓶有效鉴别。 相似文献
2.
3.
4.
5.
6.
建立一个无损检验药品塑料包装瓶并对其进行分类的模型。利用差分拉曼光谱技术对47个样品进行检测,首先在原始数据的基础上进行差分拉曼光谱分析并进行人工分类,再运用Fisher判别法(FDA)和主成分分析法(PCA)对数据进行处理,结合人工神经网络算法(ANN-MLP/RBF)构建分类模型。在多层神经网络(MLP)模型中,使用原始数据、FDA处理后的数据、PCA降维后的数据对样本分类的正确率分别为87.23%、93.62%、97.87%,MLP模型下对样本分类的整体准确率为93%;在径向基神经网络(RBF)模型下,使用原始数据、FDA处理后的数据、PCA降维后的数据对样本分类的正确率分别为87.23%、93.62%、95.74%,RBF模型下对样本分类的整体准确率为92%。在研究相同条件下对药品塑料包装瓶进行分类时,采用PCA+MLP模型为最佳方案。 相似文献
7.
8.
为建立一种快速无损检验区分塑料拖鞋鞋底的方法,利用显微共聚焦激光拉曼光谱仪采集了43个不同来源的塑料拖鞋鞋底样本的拉曼光谱图。拉曼数据经主成分分析降维后提取特征矩阵,对得到的特征矩阵进行系统聚类,建立Fisher判别函数对系统聚类的结果进行评价。最终构建径向基函数神经网络(RBFNN)实现对样本的鉴别分类,并绘制接受者操作特征曲线用以评估诊断价值。结果表明:拉曼数据提取出的特征矩阵经系统聚类被分为4组,Fisher判别分析经交叉验证后准确率为97.7%,径向基函数神经网络的准确率为100%。该方法实现了对样本快速无损的分类及预测,模型结构准确,可以为公安实际办案提供一种新思路。 相似文献
9.
10.
11.
12.
以26款市售保湿乳液为研究对象,采用定量描述分析(QDA)法对保湿乳液手部使用结束后0,2和5 min 3个阶段的肤感进行评价。采用主成分(或主分量)分析(PCA)法和凝聚层次聚类(AHC)分析法对评价结果进一步分析。PCA的结果显示,本次考察的感官属性共提取出2个主成分,其特征值分别为4.182和2.611,前2个主成分累计方差贡献率达到84.91%。其中第1主成分描述了皮肤吸收,包括3个阶段的滋润感和柔软性;第2主成分描述了皮肤残留,包括3个阶段的黏滞感。结合AHC分析,结果表明26款市售产品可分为2类,第1和2类分别包含12和14款市售产品。该研究成功将26款市售保湿乳液分布在主成分图中,并对其进行了分类。 相似文献
13.
为实现对案发现场车用保险杠物证快速、无损、准确的分类与识别,提出了一种显微激光拉曼光谱分析技术结合多元建模用于车用保险杠模式分类方法。选择自动基线校正、峰面积归一化、Savitzky-Golay平滑(3次多项式,7点平滑)作为预处理方法,借助主成分分析和线性判别分析构建分类模型。结果表明,前27个主成分下,除了奥迪品牌的2个样本被误判在了广汽品牌的样本当中,其他不同品牌的样本均实现了100.00 %的准确区分,总体分类准确率为95.24 %,分类效果较为理想;针对实际案件中的未知样本,借助该方法确定其属于别克品牌,这与实际案件中物证信息相吻合;利用显微激光拉曼光谱分析技术多元建模分析可实现对不同品牌保险杠样本准确的识别与分类,可为微量物证鉴定方面的相关研究提供一定的思路与参考。 相似文献
14.
I. J. Wesley R. J. Barnes A. E. J. McGill 《Journal of the American Oil Chemists' Society》1995,72(3):289-292
Authentication of olive oils is of great importance, not only because they command a high price but also because of the health
implications of adulteration with seed oils. A method for predicting the level of adulteration in a set of virgin and extra-virgin
olive oils adulterated with corn oil, sunflower oil, and raw olive residue oil by near-infrared spectroscopy is presented.
The best result was a correct prediction for 98% of the samples. Principal component analysis was used to predict the type
of adulterant. The best result was a 75% prediction rate. From these results, it is concluded that it is possible to design
a quality control system, which uses near-infrared technology to measure the level of adulteration. In the case where the
only test is whether the sample is adulterated or not, a simple calibration for adulteration can be used. The results suggest
that principal component analysis may offer a means of identifying the adulterant, although more work is required to give
an acceptable level of accuracy. 相似文献
15.
In the present study, the CCC shade sorting method was employed with CMC(2:1) color difference formula on the colorimetric data (CIEL*a* b*) of 37 fabric color sets. The k‐means non‐hierarchical clustering technique was also combined with the CCC shade sorting method to increase its efficiency. The results of this combined method showed a slightly better performance, as compared with the CCC method. Also, a new proposed shade sorting method by the application of principal components analysis (PCA) technique was used to identify and remove the outliers in each of the color sets. The results of separating the outliers showed that although the diameter of group criterion was improved significantly, the number of groups, the number of singleton groups, and the number of groups with low samples were increased considerably. Finally, in a second new proposed shade sorting method, PCA was used as a data reduction tool on the colorimetric data of the 37 color sets. Then, the two first principal components in combination with a k‐means clustering technique were used for the clustering of the samples in each color set. The results of this second new proposed method were found to be similar to the CCC method considering number of group and fabric consumption criteria. The second new proposed method revealed a moderately worse result, with regard to the diameter of group criterion, than the CCC method. 相似文献
16.
Harumi Sato Masahiko Shimoyama Taeko Kamiya Toru Amari Slobodan aic Toshio Ninomiya Heinz W. Siesler Yukihiro Ozaki 《应用聚合物科学杂志》2002,86(2):443-448
Raman spectra have been measured for pellets of five samples of high‐density polyethylene (HDPE), seven samples of low‐density polyethylene (LDPE), and six samples of linear low‐density polyethylene (LLDPE). The obtained Raman spectra have been compared to find out characteristic Raman bands of HDPE, LDPE, and LLDPE. Principal component analysis (PCA) was applied to the Raman spectra in the 1600–650 cm?1 region after multiplicative scatter correction (MSC) to discriminate the Raman spectra of the three different PE species. They are classified into three groups by a score plot of PCA factor 1 vs. 2. HDPE with high density and high crystallinity gives high scores on the factor 1 axis, while LDPE with low density and low crystallinity yields negative scores on the same axis. It seems that factor 1 reflects the density or crystallinity. A PC weight loadings plot for factor 1 shows six upward peaks corresponding to the bands arising from the crystalline parts or all‐trans ? (CH2)n? groups and seven downward peaks ascribed to the bands of the amorphous or anisotropic regions and those arising from the short branches. Partial least‐squares (PLS‐1) regression was applied to the Raman spectra after MSC to propose calibration models that predict the density, crystallinity, and melting points of the polyethylenes. The correlation coefficient was calculated to be 0.9941, 0.9800, and 0.9709 for the density, crystallinity, and melting point, respectively, and their root‐mean‐square error of cross validation (RMSECV) was found to be 0.0015, 3.3707, and 2.3745, respectively. The loadings plot of factor 2 for the prediction of melting point is largely different from those for the prediction of density and crystallinity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 443–448, 2002 相似文献
17.
Hillary N. Bengtson Dr. Dmitry M. Kolpashchikov 《Chembiochem : a European journal of chemical biology》2014,15(2):228-231
Differential receptors use an array of sensors to recognize analytes. Each sensor in the array can recognize not one, but several analytes with different rates, so a single analyte triggers a response of several sensors in the array. The receptor thus produces a pattern of signals that is unique for each analyte, thereby enabling identification of a specific analyte by producing a “fingerprint” pattern. We applied this approach for the analysis of DNA sequences of Mycobacterium tuberculosis strains that differ by single nucleotide substitutions in the 81‐bp hot‐spot region that imparts rifampin resistance. The technology takes advantage of the new multicomponent, selfassembling sensor, which produces a fluorescent signal in the presence of specific DNA sequences. A differential fluorescent receptor (DFR) contained an array of three such sensors and differentiated at least eight DNA sequences. The approach requires only one molecular‐beacon‐like fluorescent reporter, which can be used by all three sensors. The DFR developed in this study represents a cost‐efficient alternative to molecular diagnostic technologies that use fluorescent hybridization probes. 相似文献
18.
种植环境差异导致不同产地的藜麦有差异,故对不同产地的藜麦进行区分鉴别对商家、消费者具有重要参考价值。将中红外光谱与主成分分析(PCA)、线性判别分析(LDA)及混淆矩阵结合对不同产地藜麦进行鉴别研究。结果显示:藜麦的红外光谱主要由淀粉、蛋白质和脂质谱峰组成,且在蛋白质和糖类谱峰上有差异。用600~4000 cm-1范围的原始光谱进行PCA分析,前两个主成分(PC)取得了92%的累计方差贡献率,基于PCA分析生成的PC进行LDA分析,取得了96.25%的分类精度。基于预测结果的混淆矩阵作为综合评价指标,得到PCA-LDA分类模型的精确度、召回率及特异性分别为96.25%、96.59%和99.48%,说明使用PCA-LDA模型可以对藜麦产地进行有效鉴别。研究表明红外光谱结合多元统计分析方法是鉴别藜麦产地的有效方法。 相似文献
19.
种植环境差异导致不同产地的藜麦有差异,故对不同产地的藜麦进行区分鉴别对商家、消费者具有重要参考价值。将中红外光谱与主成分分析(PCA)、线性判别分析(LDA)及混淆矩阵结合对不同产地藜麦进行鉴别研究。结果显示:藜麦的红外光谱主要由淀粉、蛋白质和脂质谱峰组成,且在蛋白质和糖类谱峰上有差异。用600~4000 cm-1范围的原始光谱进行PCA分析,前两个主成分(PC)取得了92%的累计方差贡献率,基于PCA分析生成的PC进行LDA分析,取得了96.25%的分类精度。基于预测结果的混淆矩阵作为综合评价指标,得到PCA-LDA分类模型的精确度、召回率及特异性分别为96.25%、96.59%和99.48%,说明使用PCA-LDA模型可以对藜麦产地进行有效鉴别。研究表明红外光谱结合多元统计分析方法是鉴别藜麦产地的有效方法。 相似文献