首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein coverage, composition and structure of surface layers of fat globules in recombined milk were determined. Average protein load was ~6 mg/m2 fat surface. Both casein and whey proteins were present in the fat globule surface layer, with casein adsorbed in preference to whey proteins and αssls2)-casein adsorbed in preference to β-casein. Transmission electron microscopy showed that the surface layer of fat globule was made up of casein micelles, fragments of casein micelles and a thin layer of protein, possibly whey proteins. Experiments with surface layers that had been dispersed in EDTA showed that the extent of dissociation of caseins followed the order: β-casein > αs-casein ≦ K-casein, suggesting that most of the K-casein was probably associated directly with the fat surface.  相似文献   

2.
The effect of the contents of casein (CN) and whey protein fractions on curd yield (CY) and composition was estimated using 964 individual milk samples. Contents of αS1-CN, αS2-CN, β-CN, γ-CN, glycosylated κ-CN (Gκ-CN), unglycosylated κ-CN, β-LG, and α-LA of individual milk samples were measured using reversed-phase HPLC. Curd yield and curd composition were measured by model micro-cheese curd making using 25 mL of milk. Dry matter CY (DMCY) was positively associated with all casein fractions but especially with αS1-CN and β-CN. Curd moisture decreased at increasing β-CN content and increased at increasing γ-CN and Gκ-CN content. Due to their associations with moisture, Gκ-CN and β-CN were the fractions with the greatest effect on raw CY, which decreased by 0.66% per 1-standard deviation (SD) increase in the content of β-CN and increased by 0.62% per 1-SD increase in the content of Gκ-CN. The effects due to variation in percentages of the casein fractions in total casein were less marked than those exerted by contents. A 1-SD increase in β-CN percentage in casein (+3.8% in casein) exerted a slightly negative effect on DMCY (β = ?0.05%). Conversely, increasing amounts of αS1-CN percentage were associated with a small increase in DMCY. Hence, results suggest that, at constant casein and whey protein contents in milk, the DMCY depends to a limited extent on the variation in the αS1-CN:β-CN ratio. κ-Casein percentage did not affect DMCY, indicating that the positive relationship detected between the content of κ-CN and DMCY can be attributed to the increase in total casein resulting from the increased amount of κ-CN and not to variation in κ-CN relative content. However, milk with increased Gκ-CN percentage in κ-CN also shows increased raw CY and produces curds with increased moisture content. Curd yield increased at increasing content and relative proportion of β-LG in whey protein, but this is attributable to an improved capacity of the curd to retain water. Results obtained in this study support the hypothesis that, besides variation in total casein and whey protein contents, variation in protein composition might affect the cheese-making ability of milk, but this requires further studies.  相似文献   

3.
The aim of this study was to assess the influence of the amounts of the αS1-, αS2-, β-, and κ-casein (CN) and the α-lactalbumin and β-lactoglobulin protein fractions on the efficiency of the cheese-making process independently of their genetic polymorphisms. The study was carried out on milk samples from 1,271 Brown Swiss cows from 85 herds classified into 4 categories according to management, feeding, and housing characteristics (traditional and modern systems). To assess the efficiency of the cheese-making process, we processed the milk samples according to a laboratory cheese-making procedure (1,500 mL/sample) and obtained the following measures: (1) 3 percentage cheese yields (%CYcurd, %CYsolids, %CYwater), (2) 2 daily cheese yields obtained by multiplying %CY (curd and total solids) by daily milk yields (dCYcurd, dCYsolids), (3) 4 measures of nutrient recovery in the curd (RECfat, RECprotein, RECsolids, RECenergy), and (4) 2 measures of cheese-making efficiency in terms of the ratio between the observed and theoretical %CY (Ef-%CYcurd, Ef-%CYsolids). All the aforementioned traits were analyzed by fitting 2 linear mixed models with protein fractions as fixed effects expressed as percentage in the milk (model M-%milk) and as percentage of the total casein content (model M-%cas) together with the effects of total casein content (only in model M-%cas), daily milk yield (only in model M-%milk; not for dCY traits), dairy system, herd (random effect), days in milk, parity, and vat. The efficiency of overall cheese yield (Ef-%CYcurd) was mostly positively associated with β-CN content in the milk, whereas Ef-%CYsolids was greater with higher amounts of κ-CN and αS1-CN (M-%milk) due to the strong influence of both fractions on the recovery rate of milk components in the curd (fat and total solids, protein with αS1-CN only) when expressed as percentage of milk and of total casein; only β-CN was more important for RECprotein. In contrast, we found β-lactoglobulin to be highly negatively related to all the traits related to the cheese-making process and to the daily cheese yield per cow, whereas α-lactalbumin was positively associated with the latter traits. Additional research on this topic is needed, with particular focus on the genetic and genomic aspects of the role of protein fractions in the cheese-making process and on the associations between genetic polymorphisms in milk protein and milk nutrient recovery in the curd.  相似文献   

4.
Effects of the use of a β-casein powder to enrich cheese milk on rennet coagulation properties of milk, cheese composition and cheese ripening were investigated. Casein content of control milk was 2.5%, whereas that for the three enriched milks was adjusted with β-casein powder at 2.7%, 2.9% and 3.1%. The β-casein to α-casein ratio of these cheese milks was, respectively, 0.70, 0.79, 0.89 and 0.99. Rennet coagulation properties were related not only to casein concentration but also to the proportion of β-casein and αs-casein presents in milks. Milk with higher concentration of β-casein had poorer coagulation properties. Cheeses could be produced by using a miniature cheese making process. Moisture, ash and calcium contents decreased, while protein content and β-casein increased in cheese as casein and β-casein concentration increased in milk. As a result, hardness was higher in enriched cheeses than in control cheese. During cheese ripening, α-casein was hydrolyzed, but the rate of degradation of α-casein decreased as protein and β-casein concentration increased in cheese. β-Casein seemed to be not hydrolyzed. The rate of decrease of hardness was also slower for enriched cheeses.  相似文献   

5.
Heating milk at 120°C at pH 6.55 or pH 6.85 caused the denaturation of whey proteins and increased their association with the casein micelles. The dissociation of K -, β-, and αs-caseins (in that order by extent) from the casein micelles increased with severity of heat treatment. The effect was greater at higher pH. Gel filtration chromatography followed by gel electrophoresis of fractions showed the dissociated protein was composed of disulfide-linked k -casein/β-lactoglobulin complexes of varying composition, casein aggregates of varying sizes and some monomeric protein. When reconstituted concentrate was prepared from NFDM made from heated milk the non-sedimentable (88,000 ± g for 90 min) caseins or whey proteins/heating time profiles were altered and the rate of aggregation, as measured by turbidity of heated milks, was significantly reduced.  相似文献   

6.
The objective of this experiment was to evaluate the effects of genetic type, stage of lactation, and ripening time on proteolysis in Caciocavallo cheese. One hundred twenty Caciocavallo cheeses made from the milk of 2 breeds, Italian Brown and Italian Holstein and characterized by different stages of lactation were obtained and ripened for 1, 30, 60, 90, and 150 d. Cheese proteolysis was investigated by ripening index (ratio of water-soluble N at pH 4.6 to total protein, %) and by the study of degradation of the protein fractions (αS1-, β-, and para-κ-casein), which was determined by densitometric analysis of isoelectric focusing results. The statistical analysis showed a significant effect of the studied factors. Ripening index was higher in Italian Brown Caciocavallo cheese and in cheeses made with early lactation milk, whereas casein solubilization was greater in the first 2 mo of ripening. Isoelectric focusing analysis of cheese samples during ripening showed extensive hydrolysis of caseins. In particular, the protein fraction that underwent major degradation by proteolytic enzymes was αS1-casein, followed by β-casein, whereas para-κ-casein was less degraded. Italian Brown cheese showed a lower residual quantity of β- and para-κ-casein, whereas Italian Holstein cheese showed a lower residual quantity of αS1-casein. In addition, significant interactions of both first and second order were found on both ripening index and degradation of protein fractions. This study demonstrated that the analyzed factors influenced proteolysis of Caciocavallo cheese, which forms the basis of new knowledge that could lead to the production of a pasta filata cheese with specific characteristics.  相似文献   

7.
Genetic parameters for major milk proteins in Dutch Holstein-Friesians   总被引:1,自引:0,他引:1  
The objective of this study was to estimate genetic parameters for major milk proteins. One morning milk sample was collected from 1,940 first-parity Holstein-Friesian cows in February or March 2005. Each sample was analyzed with capillary zone electrophoresis to determine the relative concentrations of the 6 major milk proteins. The results show that there is considerable genetic variation in milk protein composition. The intraherd heritabilities for the relative protein concentrations were high and ranged from 0.25 for β-casein to 0.80 for β-lactoglobulin. The intraherd heritability for the summed whey fractions (0.71) was higher than that for the summed casein fractions (0.41). Further, there was relatively more variation in the summed whey fraction (coefficient of variation was 11% and standard deviation was 1.23) compared with the summed casein fraction (coefficient of variation was 2% and standard deviation was 1.72). For the caseins and α-lactalbumin, the proportion of phenotypic variation explained by herd was approximately 14%. For β-lactoglobulin, the proportion of phenotypic variation explained by herd was considerably lower (5%). Eighty percent of the genetic correlations among the relative contributions of the major milk proteins were between −0.38 and +0.45. The genetic correlations suggest that it is possible to change the relative proportion of caseins in milk. Strong negative genetic correlations were found for β-lactoglobulin with the summed casein fractions (−0.76), and for β-lactoglobulin with casein index (−0.98). This study suggests that there are opportunities to change the milk protein composition in the cow's milk using selective breeding.  相似文献   

8.
Cheese yield mainly depends on the amount and proportion of milk constituents; however, genetic variants of the proteins present in milk may also have an important effect. The objective of this research was to study the effect of the variants A and B of β-lactoglobulin (LG) on cheese yield using a model system consisting of skim milk powder fortified with different levels of a mixture containing α-lactalbumin and β-LG genetic variants (A, B, or A-B) in a 1:2 ratio. Fortified milk samples were subjected to pasteurization at 65°C for 30 min. Miniature cheeses were made by acidifying (pH = 5.9) fortified milk and incubating with rennet for 1 h at 32°C. The clot formed was cut, centrifuged at 2,600 × g for 30 min at 20°C and drained for determining cheese yield. Cheese-yielding capacity was expressed as actual yield (grams of cheese curd per 100 g of milk) and dry weight yield (grams of dried cheese curd per 100 g of milk). Free-zone capillary electrophoresis was used for determining β-LG A or B recovery in the curd during rennet-induced coagulation. The presence of β-LG variant B resulted in a significantly higher actual and dried weight cheese yield than when A or A-B were present at levels ≤0.675% of whey protein (WP) addition. Results of free-zone capillary electrophoresis allowed us to infer that β-LG B associates with the casein micelles during renneting, as shown by an increase in the recovery of this variant in the curd when β-LG B was added up to a maximum at 0.45% (equivalent to 0.675% WP). In general, actual or dried weight cheese yield increased as WP addition was increased from 0.225 to 0.675%. However, when WP addition ranged from 0.675 to 0.90%, a drastic drop in cheese yield was observed. This behavior may be because an increase in the aggregation of casein micelles with a concomitant inclusion of whey protein in the gel occurs at low levels of WP addition, whereas once the association of WP with the casein micelles reach a saturation point at addition levels higher than 0.675%, rearrangements of the gel network result in larger whey expulsion and syneresis. This knowledge is expected to be useful to maximize cheese yield and optimize processing conditions during cheese and cheese analogs manufacturing.  相似文献   

9.
Test-day samples were collected from individual Holstein cows in 62 herds enrolled in the Quebec Dairy Herd Analysis Service. Samples were analyzed for protein, fat, casein, and serum protein content, somatic cell count, and relative percentages of α-, β-, and κ-casein and a-lactalbumin. Cows included in the study were phenotyped for the genetic variants of αs1-, β-, and κ-casein. Unadjusted means for relative percentages of αs-, β-, and κ-casein were 59.85, 31.23, and 8.93%, respectively. Least-squares analyses showed that month of test, stage of lactation, age of the cow, somatic cell count, and phenotype of the cow for β-casein contributed to variations in the relative percentages of αs- and β-casein. Month of test, somatic cell count, and phenotype of the cow for κ-casein also had a significant effect on the relative percentage of κ-casein. When test-day milk yield; percentages of fat, protein, casein, and serum protein; casein to protein ratio; and relative percentage of α-lactalbumin were included in the model as covariates, only casein percentage did not have a significant effect on the relative percentages of αs- and β- casein. For κ-casein, only fat percent was significant.  相似文献   

10.
A method for the large-scale isolation of β-casein from renneted skim milk was developed. The curd from renneted skim milk was dispersed in hot (?70 °C) water to inactivate residual chymosin. The heated curd was subsequently recovered by centrifugation, resuspended in water and incubated at 5 °C, during which β-casein dissociated from the curd; the suspension was centrifuged and the aqueous phase lyophilised. The isolated protein consisted mainly of β-casein, containing a minor amount of γ-caseins and traces of other caseins. Unless chymosin was fully inactivated by heating, some β-casein was hydrolysed at the Leu192–Tyr193 bond. The yield of β-casein increased with incubation time, up to ∼20% of the β-casein present in the milk after 24 h at 5 °C. Reducing milk pH to 5.5 or 6.0, prior to renneting, caused a high level of contamination with αs-caseins. This isolation procedure can be easily scaled-up to an industrial process and the β-casein-depleted curd may be used for the manufacture of rennet casein or processed cheese.  相似文献   

11.
Recombined whole milk was prepared by pressure treating skim milk (200 to 600 MPa/30 min) then homogenizing with milkfat (HPHO) or by homogenizing milkfat with skim milk then pressure treating the recombined whole milk (HOHP). β-Lactoglobulin denaturation increased at higher pressures. Low levels of α-lactalbumin were denatured at 600 MPa only. Denaturation was similar in the HPHO and HOHP milk. The HPHO milk had statistically similar levels of total protein, higher levels of whey protein and κ-casein and lower levels of αs-casein adsorbed to the fat globules compared with the HOHP milk. The HPHO milk had a higher proportion of β-casein directly at the interface at all pressures and a higher proportion of κ-casein and a lower proportion of denatured whey proteins at pressure up to 400 MPa than the HOHP milk. Acid gels prepared from the HOHP milk had higher final G′ and yield stresses than those from the HPHO milk. These differences are discussed in relation to the compositions of the proteins adsorbed to the fat globules and how these interact during acidification.  相似文献   

12.
A new enzyme preparation (hieronymain), obtained from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae), was assayed for its ability to clot milk and hydrolyze bovine casein and milk whey proteins. Caseinolytic activity at 30 °C and pH 6.5 (milk clotting conditions) was 3.3 Ucas/mL and milk clotting activity was 40 ± 0.2 IMCU/mL. The κ-casein fraction, involved in the clotting formation, began to be degraded after 10 min of reaction, while the degradation of the other casein fractions proceeded slowly enough as to guarantee the production of a firm curd, with no evidence of extensive hydrolysis, a necessary condition for cheese making. In the case of whey proteins, bovine serum albumin and α-lactalbumin were quickly degraded after 30 min, while β-lactoglobulin was considerably degraded only after 60 min at 50 °C. Miniature cheeses were manufactured both with chymosine and hieronymain and analyzed by a taste panel, who found acceptable both cheeses. Hieronymain might be appropriate for cheese making, as well as for the production of milk protein hydrolysates.  相似文献   

13.
Effects of milk protein variants on the protein composition of bovine milk   总被引:2,自引:0,他引:2  
The effects of β-lactoglobulin (β-LG), β-casein (β-CN), and κ-CN variants and β-κ-CN haplotypes on the relative concentrations of the major milk proteins α-lactalbumin (α-LA), β-LG, αS1-CN, αS2-CN, β-CN, and κ-CN and milk production traits were estimated in the milk of 1,912 Dutch Holstein-Friesian cows. We show that in the Dutch Holstein-Friesian population, the allele frequencies have changed in the past 16 years. In addition, genetic variants and casein haplotypes have a major impact on the protein composition of milk and explain a considerable part of the genetic variation in milk protein composition. The β-LG genotype was associated with the relative concentrations of β-LG (A » B) and of α-LA, αS1-CN, αS2-CN, β-CN, and κ-CN (B > A) but not with any milk production trait. The β-CN genotype was associated with the relative concentrations of β-CN and αS2-CN (A2 > A1) and of αS1-CN and κ-CN (A1 > A2) and with protein yield (A2 > A1). The κ-CN genotype was associated with the relative concentrations of κ-CN (B > E > A), αS2-CN (B > A), α-LA, and αS1-CN (A > B) and with protein percentage (B > A). Comparing the effects of casein haplotypes with the effects of single casein variants can provide better insight into what really underlies the effect of a variant on protein composition. We conclude that selection for both the β-LG genotype B and the β-κ-CN haplotype A2B will result in cows that produce milk that is more suitable for cheese production.  相似文献   

14.
综述了乳蛋白基因多态性和检测方法以及其对乳品加工及人类营养影响的研究进展。酪蛋白的基因型较多,除了基因差异外,还有磷酸化水平与糖基化程度等其他影响因素。乳清蛋白部分,β-乳球蛋白(-βLG)的基因型较多,而α-乳白蛋白(-αLA)的基因型较少。乳蛋白基因多态性可从蛋白水平和基因水平两方面进行检测。乳蛋白基因型会显著影响乳的加工特性,包括热稳定性、凝乳性能及干酪的产率和品质。乳蛋白基因与人类营养息息相关,随着分子技术的发展,基因多态性的应用会更广,需进一步的研究来更好地描述多态性与乳品加工及营养之间的关系。  相似文献   

15.
A serine protease, which preferentially cleaves peptide bonds at the carboxylic site of Glu and Asp was evaluated with milk proteins as substrate. The enzyme hydrolyzed casein almost 10 times more efficiently than whey protein. In the casein assay, whey protein did not inhibit the protease, but the enzyme activity in a chromogenic assay was severely inhibited by one whey protein, β-lactoglobulin. Capillary electrophoresis of β-lactoglobulin hydrolysate revealed a peptide profile corresponding to the numbers of susceptible bonds, The enzyme may provide advantages in preparation of functional protein fractions and in cheese ripening.  相似文献   

16.
《Journal of dairy science》2023,106(3):1626-1637
Sheep milk is considered unstable to UHT processing, but the instability mechanism has not been investigated. This study assessed the effect of UHT treatment (140°C/5 s) and milk pH values from 6.6 to 7.0 on the physical properties of sheep skim milk (SSM), including heat coagulation time, particle size, sedimentation, ionic calcium level, and changes in protein composition. Significant amounts of sediment were found in UHT-treated SSM at the natural pH (~6.6) and pH 7.0, whereas lower amounts of sediment were observed at pH values of 6.7 to 6.9. The proteins in the sediment were mainly κ-casein (CN)–depleted casein micelles with low levels of whey proteins regardless of the pH. Both the pH and the ionic calcium level of the SSM at all pH values decreased after UHT treatment. The dissociation levels of κ-, β-, and αS2-CN increased with increasing pH of the SSM before and after heating. The protein content, ionic calcium level, and dissociation level of κ-CN were higher in the SSM than values reported previously in cow skim milk. These differences may contribute to the high amounts of sediment in the UHT-treated SSM at natural pH (~6.6). Significantly higher levels of κ-, β-, and αS2-CN were detected in the serum phase after heating the SSM at pH 7.0, suggesting that less κ-CN was attached to the casein micelles and that more internal structures of the casein micelles may have been exposed during heating. This could, in turn, have destabilized the casein micelles, resulting in the formation of protein aggregates and high amounts of sediment after UHT treatment of the SSM at pH 7.0.  相似文献   

17.
The objectives of this study were (1) to assess the effect of a denatured whey protein concentrate (DWPC) and its fractions on cheese yield, composition, and rheological properties, and (2) to separate the direct effect of the DWPC or its fractions on cheese rheological properties from the effect of a concomitant increase in cheese moisture. Semihard cheeses were produced at a laboratory scale, and mechanical properties were characterized by dynamic rheometry. Centrifugation was used to induce a moisture gradient in cheese to separate the direct contribution of the DWPC from the contribution of moisture to cheese mechanical properties. Cheese yield increased and complex modulus (G*) decreased when the DWPC was substituted for milk proteins in milk. For cheeses with the same moisture content, the substitution of denatured whey proteins for milk proteins had no direct effect on rheological parameters. The DWPC was fractionated to evaluate the contribution of its different components (sedimentable aggregates, soluble component, and diffusible component) to cheese yield, composition, and rheological properties. The sedimentable aggregates were primarily responsible for the increase in cheese yield when DWPC was added. Overall, moisture content explained to a large extent the variation in cheese rheological properties depending on the DWPC fraction. However, when the effect of moisture was removed, the addition of the DWPC sedimentable fraction to milk increased cheese complex modulus. Whey protein aggregates were hypothesized to act as active fillers that physically interact with the casein matrix and confer rigidity after pressing.  相似文献   

18.
The objective of this study was to estimate genetic parameters for milk protein fraction contents, milk protein composition, and milk coagulation properties (MCP). Contents of αS1-, αS2-, β-, γ-, and κ-casein (CN), β-lactoglobulin (β-LG), and α-lactalbumin (α-LA) were measured by reversed-phase HPLC in individual milk samples of 2,167 Simmental cows. Milk protein composition was measured as percentage of each CN fraction in CN (αS1-CN%, αS2-CN%, β-CN%, γ-CN%, and κ-CN%) and as percentage of β-LG in whey protein (β-LG%). Rennet clotting time (RCT) and curd firmness (a30) were measured by a computerized renneting meter. Heritabilities for contents of milk proteins ranged from 0.11 (α-LA) to 0.52 (κ-CN). Heritabilities for αS1-CN%, κ-CN%, and β-CN% were similar and ranged from 0.63 to 0.69, whereas heritability of αS2-CN%, γ-CN%, and β-LG% were 0.28, 0.18, and 0.34, respectively. Effects of CSN2-CSN3 haplotype and BLG genotype accounted for more than 80% of the genetic variance of αS1-CN%, β-CN%, and κ-CN% and 50% of the genetic variance of β-LG%. The genetic correlations among the contents of CN fractions and between CN and whey protein fractions contents were generally low. When the data were adjusted for milk protein gene effects, the magnitude of the genetic correlations among the contents of milk protein fractions markedly increased, indicating that they undergo a common regulation. The proportion of β-CN in CN correlated negatively with κ-CN% (r = −0.44). The genetic relationships between CN and whey protein composition were trivial. Low milk pH correlated with favorable MCP. Genetically, contents and proportions of αS1- and αS2-CN in CN were positively correlated with RCT. The relative proportion of β-CN in CN exhibited a genetic correlation with RCT of −0.26. Both the content and the relative proportion of κ-CN in CN did not correlate with RCT. Weak curds were genetically associated with increased proportions in CN of αS1- and αS2-CN, decreased contents of β-CN and κ-CN, and decreased proportion of κ-CN in CN. Negligible effects on the estimated correlations between a30 and κ-CN contents or proportion in CN were observed when the model accounted for milk protein gene effects. Increasing β-CN and κ-CN contents and relative proportions in CN and decreasing the content and proportions of αS1-CN and αS2-CN and milk pH through selective breeding exert favorable effects on MCP.  相似文献   

19.
Whole-genome association study for milk protein composition in dairy cattle   总被引:2,自引:0,他引:2  
Our objective was to perform a genome-wide association study for content in bovine milk of αS1-casein (αS1-CN), αS2-casein (αS2-CN), β-casein (β-CN), κ-casein (κ-CN), α-lactalbumin (α-LA), β-lactoglobulin (β-LG), casein index, protein percentage, and protein yield using a 50K single nucleotide polymorphism (SNP) chip. In total, 1,713 Dutch Holstein-Friesian cows were genotyped for 50,228 SNP and a 2-step association study was performed. The first step involved a general linear model and the second step used a mixed model accounting for all family relationships. Associations with milk protein content and composition were detected on 20 bovine autosomes. The main genomic regions associated with milk protein composition or protein percentage were found on chromosomes 5, 6, 11, and 14. The number of chromosomal regions showing significant (false discovery rate <0.01) effects ranged from 3 for β-CN and 3 for β-LG to 12 for αS2-CN. A genomic region on Bos taurus autosome (BTA) 6 was significantly associated with all 6 major milk proteins, and a genomic region on BTA 11 was significantly associated with the 4 caseins and β-LG. In addition, regions were detected that only showed a significant effect on one of the milk protein fractions: regions on BTA 13 and 22 with effects on αS1-CN; regions on BTA 1, 9, 10, 17, 19, and 28 with effects on αS2-CN; a region on BTA 6 with an effect on β-CN; regions on BTA 13 and 21 with effects on κ-CN; regions on BTA 1, 5, 9, 16, 17, and 26 with effects on α-LA; and a region on BTA 24 with an effect on β-LG. The proportion of genetic variance explained by the SNP showing the strongest association in each of these genomic regions ranged from <1% for αS1-CN on BTA 22 to almost 100% for casein index on BTA 11. Variation associated with regions on BTA 6, 11, and 14 could in large part but not completely be explained by known protein variants of β-CN (BTA 6), κ-CN (BTA 6), and β-LG (BTA 11) or DGAT1 variants (BTA 14). Our results indicate 3 regions with major effects on milk protein composition, in addition to several regions with smaller effects involved in the regulation of milk protein composition.  相似文献   

20.
A mass balance optimization model was developed to determine the value of the κ-casein genotype and milk composition in Cheddar cheese and whey production. Inputs were milk, nonfat dry milk, cream, condensed skim milk, and starter and salt. The products produced were Cheddar cheese, fat-reduced whey, cream, whey cream, casein fines, demineralized whey, 34% dried whey protein, 80% dried whey protein, lactose powder, and cow feed. The costs and prices used were based on market data from March 2004 and affected the results. Inputs were separated into components consisting of whey protein, ash, casein, fat, water, and lactose and were then distributed to products through specific constraints and retention equations. A unique 2-step optimization procedure was developed to ensure that the final composition of fat-reduced whey was correct. The model was evaluated for milk compositions ranging from 1.62 to 3.59% casein, 0.41 to 1.14% whey protein, 1.89 to 5.97% fat, and 4.06 to 5.64% lactose. The κ casein genotype was represented by different retentions of milk components in Cheddar cheese and ranged from 0.715 to 0.7411 kg of casein in cheese/kg of casein in milk and from 0.7795 to 0.9210 kg of fat in cheese/kg of fat in milk. Milk composition had a greater effect on Cheddar cheese production and profit than did genotype. Cheese production was significantly different and ranged from 9,846 kg with a high-casein milk composition to 6,834 kg with a high-fat milk composition per 100,000 kg of milk. Profit (per 100,000 kg of milk) was significantly different, ranging from $70,586 for a high-fat milk composition to $16,490 for a low-fat milk composition. However, cheese production was not significantly different, and profit was significant only for the lowest profit ($40,602) with the κ-casein genotype. Results from this model analysis showed that the optimization model is useful for determining costs and prices for cheese plant inputs and products, and that it can be used to evaluate the economic value of milk components to optimize cheese plant profits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号