首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty-five Holstein cows were used to evaluate management schemes involving altered dry period (DP) lengths on subsequent milk production, energy balance (EB), and metabolic variables. Cows were assigned to one of 3 treatments: traditional 56-d DP (fed a low-energy diet from -56 to -29 d and a moderate energy diet from -28 d to parturition; T), 28-d DP (continuously fed a high energy diet; S), and no planned DP (continuously fed a high energy diet; N). Prepartum DM intake (DMI), measured from 56 d prepartum through parturition, was lower for cows on the T treatment than for cows on the S treatment and was higher for cows on the N treatment than for cows on the S treatment. There were no differences in prepartum plasma glucose, and beta-hydroxybutryric acid; there was a treatment by time interaction for prepartum plasma nonesterified fatty acid (NEFA). There was no difference in prepartum liver triglyceride (TG); postpartum liver TG was decreased for cows on the N treatment compared with cows on the S treatment, but was similar for cows on the T and S treatments. Postpartum NEFA was similar between cows on the T and S treatments, but was greater for cows on the S treatment than for cows on the N treatment. Postpartum glucose was greater for cows on the N treatment compared with cows on the S treatment and tended to be greater for cows on the S treatment than for cows on the T treatment. There was no difference in postpartum solids-corrected milk (SCM) production or DMI by cows on the T vs. S treatment. However, there was a tendency toward lower postpartum SCM production by cows on the N vs. S treatment and a tendency for greater postpartum DMI by cows on the N vs. S treatment. Postpartum EB was greater for cows on the S vs. T treatment and the N vs. S treatment. In general, T and S management schemes had similar effects on DMI, SCM, and metabolic variables in the first 70 d of the subsequent lactation. Eliminating the DP improved energy and metabolic status.  相似文献   

2.
The aim of this study was to compare 2 dry-cow management strategies and evaluate the effect of shortened dry period strategy on feed intake, metabolism, and postpartum performance of dairy cows in early lactation. Twenty-nine high-yielding dairy cows were divided into 2 groups. The control (CON) group (n = 14) was assigned to a traditional dry period of approximately 60 d (57 ± 5.9 d) and was fed a far-off dry cow ration from dry-off to −21 d relative to expected parturition. From d −21 relative to expected parturition, the cows were switched to a precalving ration containing an additional 3 kg of concentrates. The cows of the experimental group (n = 15) were assigned to a shortened dry period (SDP; 35 ± 6.3 d) and were continuously fed a late-lactation diet from d −60 d relative to expected parturition until calving. After calving, both groups were fed the same lactation diet corresponding to their lactation requirements and cows were followed for 100 d of lactation. Prepartum dry matter intake of the cows assigned to an SDP and fed a late-lactation diet was approximately 4.11 kg/cow per day greater compared with the CON group during the 60 d. However, no effect of dry period strategy on postpartum dry matter intake was detected. The cows with an SDP produced approximately 2.78 kg/d (6.9%) less milk in the first 100 d of lactation than CON cows; the difference was not statistically significant. No differences were observed in live body weight, body condition score, or back-fat thickness between the treatments. Similarly, no differences existed in concentrations of plasma metabolites. The cows of the SDP group showed lower pH and increased concentrations of lactic acid and volatile fatty acids prepartum than the CON cows. Postpartum concentrations of lactic acid, volatile fatty acids, and NH3 and pH in rumen fluid did not differ between the treatments. Shortening of the dry period did not affect the colostrum quality or birth weights of the calves. Based on the results of this study, a traditional dry period management strategy appeared to be more favorable, considering the dry matter intake and milk production, compared with an SDP and feeding a late-lactation diet throughout the dry period.  相似文献   

3.
Twenty-four multiparous Holstein cows [body weight, 759 kg (SD = 30 kg); body condition score, 3.2 (SD = 0.13)] were used in a randomized complete block design to determine the effect of feeding α-amylase during the transition period on rumen fermentation, key metabolic indicators, and lactation performance. Cows were assigned to either a control diet or the control diet supplemented with α-amylase (662 fungal amylase units per gram, AMA) at 0.1% of diet dry matter (DM). Experimental diets were fed from 21 d before expected calving through 21 d in milk. From 22 to 70 d in milk, all cows were fed a similar lactation cow diet. Average pre- and postpartum DM intakes were 12.4 and 17.8 kg/d, respectively, and did not differ between treatments; however, DM intakes during the last week prepartum decreased to a greater degree in AMA than control cows compared with wk −2. Supplementing diets with α-amylase tended to increase proportions of ruminal butyrate prepartum but not postpartum. Treatment differences were not detected for concentrations of insulin in plasma and lipid and glycogen in liver tissue. Prepartum, concentrations of β-hydroxybutyrate and nonesterified fatty acids were increased in cows fed AMA compared with the control diet. Postpartum, concentrations of glucose in plasma tended to be increased by feeding AMA. Increased plasma β-hydroxybutyrate and nonesterified fatty acids pre- but not postpartum and a tendency for increased plasma glucose postpartum demonstrate shifting reliance from lipid- to carbohydrate-based metabolism postpartum in cows fed α-amylase.  相似文献   

4.
Effect of dry period length on reproduction during the subsequent lactation   总被引:1,自引:0,他引:1  
Days dry may influence reproductive measures such as days to first postpartum ovulation, days open, and pregnancy per artificial insemination (AI). Holstein cows (n = 781) from an approximately 3,000-cow commercial dairy operation were randomly assigned to 1 of 2 treatments with different targeted dry period (DP) lengths. Treatments were 1) a traditional DP of 55 d (T) or 2) a shortened DP of 34 d (S). All dry cows on T were fed a low-energy diet until 35 d before expected calving, and then at 34 d before expected calving, cows on T and S were fed a moderate energy diet until parturition. After parturition, all cows consumed the same diets that included a postcalving diet followed by a lactation diet. Actual days dry for each treatment were close to expected values, 34 and 56 d for S and T, respectively. Median days until first postpartum ovulation occurred sooner for S compared with T (35 vs. 43 d). The percentage of cows that were classified anovular by 70 d in milk (DIM) was more than 2-fold greater for cows on T than S (18 vs. 8%). Cows received AI after standing estrus starting at d 45, and the percentage of cows pregnant at 70 DIM tended to be greater for S than T; younger cows were similar (20.2 vs. 18.8%), but there was a difference between S and T in older cows (20.3 vs. 10.6%). Similarly, median days open tended to be fewer for cows on S than T. At 300 DIM, 85% of cows in both treatments were pregnant. Combining data from first and second service, pregnancies per AI were greater in older cows on S than T (32 vs. 24%). Thus, shortening the DP appeared to increase reproductive efficiency in older cows by shortening time to first ovulation, reducing numbers of anovular cows, and improving fertility. Future studies at more locations with varying reproductive management strategies are needed to confirm and provide the mechanistic basis for these results.  相似文献   

5.
Objectives were to evaluate the effects of a low dose of bovine somatotropin (bST) injected prepartum and postpartum on body condition score (BCS), body weight (BW), and milk yield (MY) in cows as well as somatotropin insulin, insulin-like growth factor-I (IGF-I), glucose, and nonesterified fatty acids (NEFA) in plasma. Holstein cows nearing second or later parities were assigned randomly to control (CON = 98) or bST-treated (TRT = 95) groups. Biweekly injections of bST began 21 +/- 3 d before expected calving and continued through 42 d postpartum (CON vs. TRT; 0 vs. 10.2 mg of bST/ d). From 42 to 100 d postpartum, no cows received bST. During yr 1, somatotropin, IGF-I, insulin, NEFA, and glucose were measured in plasma samples from 82 cows. During yr 2, effects of bST on BCS and BW of 111 cows were evaluated, but no blood samples were collected. Milk yields through 100 d of all 193 cows were analyzed. Prepartum treatment with bST resulted in greater prepartum plasma concentrations of somatotropin, insulin, and numerically greater NEFA but did not affect glucose or IGF-I. Postpartum bST increased mean plasma concentrations of somatotropin and NEFA, but not INS, IGF-I, or glucose. Mean BCS of cows did not differ prepartum, around parturition, or postpartum. Although mean BW did not differ prepartum or around calving, cows receiving bST maintained greater BW postpartum. Cows receiving bST tended to have higher MY (6.6%) in the first 60 d of lactation, but differences did not persist through 100 d, including approximately 40 d when no cows received bST. Number of cows that were culled due to health (CON = 3 vs. TRT = 2) or died (CON = 3 vs. TRT = 1) were not affected by treatment. Low doses of bST in the transition period resulted in higher postpartum BW, quicker recovery of body condition during lactation, and significantly more milk during treatment.  相似文献   

6.
We evaluated the effect of shortening the dry period (DP) on milk and energy-corrected milk (ECM) yields, milk components, colostrum quality, metabolic status, and reproductive parameters. Primiparous (n = 372) and multiparous (n = 400) Israeli Holstein cows from 5 commercial dairy herds were subjected to a 60-d or 40-d DP. Cows within each herd were paired according to milk production, age, days in milk, and expected calving. Analysis of the data from all cows, irrespective of age, revealed significant differences in milk and ECM yields that favored the 60-d DP, with a prominent effect in 2 of 5 examined herds. In primiparous cows, milk and ECM yields were similar between groups in 4 of 5 farms. In multiparous cows undergoing a 60-d (vs. 40-d) DP, milk and ECM yields were higher in 3 herds. These differences could not be explained by milk and ECM yields in cows diagnosed with metritis, ketosis, and mastitis (defined by a somatic cell count threshold of 250,000 cell/mL), distribution of infected and noninfected cows, or new infections during DP and after calving. Including the milk and ECM yields from an average of 19.55 d from the previous lactation revealed higher milk and ECM yields for 40-d (vs. 60-d) DP cows in all herds. Analyzing 2 consecutive lactations revealed similar milk and ECM yields between groups in 4 out of 5 herds. In 1 herd, yields were higher in the 40-d compared with the 60-d DP group. One week after calving, the nonesterified fatty acid concentrations of 40-d DP cows were significantly lower than those of 60-d DP cows, indicating better postpartum energy balance. Colostrum quality, measured as IgG concentration, did not differ between the 2 DP groups. Cows assigned to 40-d DP had better reproductive performance, as reflected by fewer days to first insemination, a lower proportion with >90 d to first insemination, and fewer days to pregnancy. With respect to primiparous cows, a short DP increased conception rate after first artificial insemination and decreased the proportion of nonpregnant cows after 150 d in milk. In light of these findings, we suggest that a short DP be applied for its economic and physiological benefits. This is highly relevant to dairy herds located in regions such as Israel, Spain, and Florida that suffer from reduced milk production during the hot season.  相似文献   

7.
Two trials using lactating Holstein cows were conducted to evaluate effects of a diet containing oriental mustard bran on dry matter intake (DMI), milk production, milk components, and organoleptic properties. In experiment 1, 34 lactating cows (24 multiparous and 10 primiparous; days in milk ≥50 d) were used in a switchback design to determine the lactational response and organoleptic quality of milk when the diet contained 8% oriental mustard bran (MB) versus a control diet (CON). Mustard bran replaced a portion of soybean meal and all the beet pulp in the CON diet. Milk yields were greater for cows fed the MB diet; however, no differences were found in DMI, 3.5% fat- (FCM) or solids-corrected milk. Milk components and components production were not affected by treatment. Milk organoleptic qualities were not affected by diet. In experiment 2, 22 lactating cows (16 multiparous and 6 primiparous; days in milk ≥21 d) were assigned randomly within parity to receive MB or CON from wk 4 to 19 postpartum in a randomized complete block design. Cows were fed CON wk 1 to 3 postpartum. The MB diet contained the same ingredients as the CON, except sunflower seed and a portion of soybean meal were replaced with mustard bran. Milk and components data were collected during wk 3 postpartum and used as covariates to adjust treatment means. Intake was greater for cows fed the MB diet; however, daily milk, 3.5% FCM, and solids-corrected milk yields were not different between diets. Milk components and component yields were not affected by treatment. Milk urea concentration was less for cows fed the MB diet. Although cows fed the MB diet had greater DMI, this was not translated into a higher milk 3.5% FCM/DMI production efficiency ratio. During experiment 2, many cows fed MB experienced minor to severe hemolysis with bloody urine. This hemolysis believed to be caused by the S-methyl-cysteine sulfoxide contained in mustard bran could have affected milk production efficiency. The increased milk yield observed in experiment 1 was not observed in experiment 2. Adding 8% of MB to lactating cow diets had a mixed effect on DMI and milk production. Milk component yields and milk quality were not affected. Feeding this level of MB presents a hemolytic danger to lactating dairy cows.  相似文献   

8.
A total of 850 Holstein cows from 13 commercial dairy herds were involved in the present study to compare the effects of 2 different dry period (DP) management strategies on health and reproductive parameters. Cows were assigned to either a short (SDP; 35-d) or a conventional (CDP; 60-d) DP management within each herd, based on previous 305-d milk yield, parity (414 primiparous and 436 multiparous), and estimated calving interval. Cows assigned to CDP were fed a dry cow ration from dry-off until 21 d prepartum, and were then switched to a precalving ration. Cows assigned to SDP were fed the precalving ration throughout their DP. Rations were specific to each herd. A significant treatment × parity interaction was found for culling rate. Dry period management did not affect culling rate for second-lactation cows but a significantly higher culling rate occurred in multiparous CDP cows compared with SDP (42.6 vs. 31.6% ± 3.7 for CDP and SDP, respectively). Management used in the DP did not affect incidence of severe ketosis, displaced abomasum, milk fever, and mastitis, although incidence of these metabolic disorders were lower in second-lactation than third- or greater-lactation cows. The incidence of mild ketosis (evaluated by milk ketone concentration) was lower following SDP, probably as a result of better energy balance. On the other hand, the incidence of retained placenta was higher in multiparous cows assigned to SDP, but the reason for this increase remains unclear. Nevertheless, this did not lead to increased incidence of metritis. Moreover, DP management did not influence reproductive measures, including days in milk at first breeding, number of breedings per conception, as well as conception rates at first and second services. Regarding days open, overall, all 13 herds were not significantly affected by treatment, but 1 herd clearly showed opposite results to the 12 others. Our results indicate that a short DP management strategy could facilitate transition from one lactation to the next by decreasing the incidence of mild ketosis, with no major negative effects on other health parameters and reproduction. The variation in results observed among herds suggests that other management practices influence the response observed following a short or conventional DP, emphasizing the need for other field studies.  相似文献   

9.
A total of 850 cows distributed among 13 commercial Holstein herds were involved in this study to compare the effects of 2 different dry period (DP) management strategies on milk and component yields as well as body condition score (BCS) over complete lactations. Within each herd and every 2 mo, cows were assigned to a short (35 d dry; SDP) or conventional (60 d dry; CDP) DP management based on previous lactation 305-d milk yield, predicted calving interval, and parity: primiparous (n = 414) and multiparous (n = 436). Cows assigned to CDP were fed a far-off dry cow ration from dry-off until 21 d prepartum, and were then switched to a precalving ration. Cows assigned to SDP were fed the precalving ration throughout their DP. Rations were different across herds, but the late-lactation, precalving, and early lactation rations were identical for both treatment groups within each herd. Additional milk was obtained at the end of lactation from cows assigned to SDP due to the extended lactation. Average daily milk yield in the following lactation was not different between treatments for third- or greater-lactation cows, but was significantly decreased in second-lactation SDP cows. However, when expressed as energy-corrected milk, this difference was not significant. Although lower for primiparous than multiparous cows, body weight and BCS were not affected by DP management strategy. Milk production and BCS responses to treatments varied among herds. Results from the present study suggest that a short DP management strategy could be more appropriate for today's dairy cows, although not suitable for all cows or all herds.  相似文献   

10.
Low postpartum blood calcium remains one of the largest constraints to postpartum feed intake, milk yield, and energy balance in transitioning dairy cows. Supplemental dietary anions decrease the dietary cation-anion difference (DCAD) and reduce the risk for postpartum hypocalcemia. Prepartum management strategies aiming to minimize social stress and diet changes have resulted in a need to explore the effects of extended exposure to a negative DCAD (>21 d) diet. Holstein and Holstein-cross dairy cows (n = 60) were assigned to 1 of 3 treatments 42 d before expected calving to evaluate effects of supplying anions for 21 or 42 d during the dry period on energy status, postpartum production, and Ca homeostasis. Treatments included (1) a control diet (CON; DCAD = 12 mEq/100 g of DM), (2) a 21-d negative DCAD diet (21-ND; DCAD = 12 and −16 mEq/100 g of DM), and (3) a 42-d negative DCAD diet (42-ND; DCAD = −16 mEq/100 g of DM). Cows fed CON were fed positive DCAD prepartum for 42 d. Cows fed 21-ND received the positive DCAD (12 mEq/100 g of DM) diet for the first 21 d of the dry period and the anionic diet (−16 mEq/100 g of DM) from d 22 until calving. Cows fed 42-ND received the anionic diet for the entire dry period. Control and anionic diets were formulated by using 2 isonitrogenous protein mixes: (1) 97.5% soybean meal and (2) 52.8% BioChlor (Church & Dwight Co. Inc.), 45.8% soybean meal. Supplementing anions induced a mild metabolic acidosis, reducing urine pH for 21-ND and 42-ND compared with CON. Prepartum DMI was not different among treatments. Postpartum DMI was higher for 21-ND compared with CON (20.8 vs. 18.1 ± 1.1 kg/d), and 42-ND had similar DMI compared with 21-ND. During the first 56 d of lactation 21-ND had greater average milk production compared with CON (44.8 vs. 39.2 ± 2.1 kg/d). Average milk production by 42-ND was similar to 21-ND. Postpartum total blood Ca concentration was greater for 42-ND. Cows fed anionic diets prepartum tended to have lower lipid accumulation in the liver after calving compared with CON. These data suggest low-DCAD diets fed for 21 or 42 d during the dry period can have positive effects on postpartum DMI, Ca homeostasis, and milk production.  相似文献   

11.
Pregnant cows (n = 189) in two commercial dairy farms were assigned randomly to be fed energy-dense diets for either 3 or 6 wk before expected calving. Cows fed diets for less than or equal to 26 d were designated the short (S) treatment group, and those fed greater than 26 d were the long (L) treatment group. Cows in L tended to have improved energy status during the first 2 wk postpartum, as indicated by higher insulin concentrations and a tendency for lower nonesterified fatty acid concentrations. Treatment did not affect plasma beta-hydroxybutyrate concentrations. Cows in L tended to gain more body condition during the late dry period. Total body condition loss from parturition through 6 wk postpartum was not different between treatments, but the rate of change varied over this period. Cows in S lost more body condition during the first 3 wk postpartum than cows in L. In farm 1 only, cows in L lost more body condition from 3 to 6 wk postpartum and had a higher incidence of metritis and a longer interval to first service than cows in S. Cows in L had higher milk protein content through 60 d in milk compared with cows in S. Additionally, cows in L in farm 1 produced 4.4 kg/d less milk, tended to have lower milk fat content and yields, and higher somatic cell counts through 150 d in milk than cows in S. Overall, increasing the length of time cows were fed the energy-dense diet prepartum elicited significant changes in farm 1, but had little effect in farm 2. Based on these results, L treatment may improve energy status immediately postpartum, but long-term effects varied between farms, perhaps due to other unmeasured management differences.  相似文献   

12.
Cows experience a significant negative protein balance during the first 30 d of lactation. Given the functional effects of AA on health, especially in challenging periods such as calving, higher levels of protein and specific AA in the diet may act to improve health and feed intake. The response of dairy cows to 3 protein supplementation strategies during the transition period and through the first 45 d in milk was evaluated. The final data set had 39 Holstein cows blocked based on parity (primiparous vs. multiparous) and expected calving and randomly assigned within each block to one of 3 dietary treatments: low protein (LP), high protein (HP), or high protein plus rumen-protected methionine (HPM). Treatments were offered from d ?18 ± 5 to 45 d relative to parturition. Pre- and postpartum diets were formulated for high metabolizable protein (MP) supply from soybean meal, and HP and HPM provided higher MP balance than LP. Preplanned contrasts were LP versus HP+HPM and HP versus HPM. Significance was declared at P ≤ 0.05 and trends at 0.05 < P ≤ 0.10. Cows fed HP and HPM had greater fry matter intake (DMI) prepartum than LP (+2 kg/d), and there was a trend for greater DMI with HPM than with HP (+1.6 kg/d). Body weight and condition score before and after calving did not differ among treatments. High protein (HP and HPM) tended to increase milk yield during the first 45 d of lactation (+1.75 kg/d), increased milk lactose content and urea-N in milk and plasma, tended to increase blood BHB 14 d postpartum, and tended to reduce milk/DMI compared with LP. Blood concentrations of calcium at calving and of glucose, and nonesterified fatty acids pre- and postpartum did not differ. High protein induced lower concentration of plasma IL-1 at calving and lowered blood lymphocytes 21 d postpartum, suggestive of a reduced inflammatory status compared with LP. The concentrations of IL-10, tumor necrosis factor alpha, and other hemogram variables did not differ among treatments. Addition of rumen-protected methionine to the HP diet did not alter milk yield but increased fat and total solids concentrations. The rumen-protected methionine had no effect on blood metabolites and immunity markers, with the exception of increased pre-partum insulin concentrations. The data indicate that dairy cows around calving respond positively to an increase in the supply of MP and to rumen-protected methionine supplementation of the HP diet by increasing intake and improving immune status.  相似文献   

13.
The objective of this study was to evaluate the effects of the starch content of pre- and postpartum diets on productivity, plasma energy metabolites, and serum markers of inflammation of dairy cows during the calving transition period. Eighty-eight primiparous and multiparous cows were randomly assigned to pre- and postpartum dietary treatments balanced for parity and pretrial body condition score at d 28 ± 3 before expected calving date. Cows were fed either a control [Control; 14.0% starch, dry matter (DM) basis] or high-starch (High; 26.1% starch, DM basis) prepartum diet commencing 28 ± 3 d before expected calving date. Following calving, cows were fed either a high-fiber (HF; 33.8% neutral detergent fiber, 25.1% starch, DM basis) or high-starch (HS; 27.2% neutral detergent fiber, 32.8% starch, DM basis) postpartum diet for the first 20 ± 2 d following calving. Cows fed the High prepartum diet had greater DM intake (12.4 vs. 10.2 kg/d), plasma concentrations of insulin (1.72 vs. 14.2 ng/mL), glucose (68.1 vs. 65.0 mg/dL), and glucagon-like peptide-2 (0.41 vs. 0.32 ng/mL) before parturition, but increased plasma free fatty acid concentration (452 vs. 363 µEq/L) and milk fat yield (1.64 vs. 1.48 kg/d) after parturition. Cows fed the HS postpartum diet had lower plasma free fatty acid (372 vs. 442 µEq/L) and serum haptoglobin (0.46 vs. 0.70 mg/mL) concentrations over a 3-wk period after calving. In addition, there was a tendency for interaction between prepartum and postpartum diets for milk yield, where feeding the HS postpartum diet increased milk yield compared with the HF diet for cows fed the Control prepartum diet (40.8 vs. 37.9 kg/d) but not for cows fed the High prepartum diet. These results suggest that management efforts to minimize the change in diet fermentability during the calving transition by feeding the High prepartum diet, the HF postpartum diet, or both did not increase productivity of dairy cows but increased fat mobilization after calving. Our findings also suggest that feeding high-starch postpartum diets can decrease fat mobilization and serum indicators of systemic inflammation and increase milk production even with the transition from a low-starch prepartum diet.  相似文献   

14.
Eighty two multiparous Holstein cows were blocked by genetic merit (high vs. low) and assigned to one of two treatments [high rumen-undegradable protein (RUP): rumen-degradable protein (RDP) vs. low RUP: RDP] from d 21 before to d 150 after calving to study the effects of these treatments on production and reproductive performance. Diets were isonitrogenous (dry cow 10.5% crude protein; lactating cow 19.3%), isoenergetic (dry cow 10.0 MJ of metabolizable energy (ME); lactating cow 10.9 MJ of ME) and fed as total mixed rations. Feeding more RUP significantly increased dry matter intake and milk yield, reduced body tissue mobilization, and lowered concentrations of serum nonesterified fatty acids (NEFA) and plasma urea. Expression of estrus at first ovulation was improved, first service conception rate was higher, and calving to conception interval was shorter for the high RUP group. Cows of high genetic merit produced more milk, mobilized more body tissue, and had higher concentrations of plasma growth hormone. The dry matter intake and concentrations of blood metabolites did not significantly differ with genetic merit. Expression of estrus at first ovulation was significantly lower for cows of high genetic merit. Serum NEFA concentrations were significantly higher, and estrus was not observed at first ovulation for cows of higher genetic merit fed the low RUP diet. The interaction between dietary RUP and genetic merit was not significant for other measures of performance or fertility. Feeding a low RUP: high RDP diet had negative effects on some aspects of production and reproductive performance. The effects of diet on NEFA concentrations and estrus display were greater in cows of high genetic merit, indicating that potential interactions should be evaluated in future reproductive studies involving protein and fertility.  相似文献   

15.
Objectives were to evaluate the effect of prepartum energy intake on performance of dairy cows supplemented with or without ruminally protected choline (RPC; 0 or 17.3 g/d of choline chloride; 0 or 60 g/d of ReaShure, Balchem Corp., New Hampton, NY). At 47 ± 6 d before the expected calving date, 93 multiparous Holstein cows were assigned randomly to 1 of 4 dietary treatments in a 2 × 2 factorial arrangement. Cows were fed energy to excess [EXE; 1.63 Mcal of net energy for lactation/kg of dry matter (DM)] or to maintenance (MNE; 1.40 Mcal of net energy for lactation/kg of DM) in ad libitum amounts throughout the nonlactating period. The RPC was top-dressed for 17 ± 4.6 d prepartum through 21 d postpartum (PP). After calving, cows were fed the same methionine-balanced diet, apart from RPC supplementation, through 15 wk PP. Liver was biopsied at ?14, 7, 14, and 21 d relative to parturition. Cows fed EXE or MNE diets, respectively, consumed 40 or 10% more Mcal/d than required at 15 d before parturition. Cows fed the MNE compared with the EXE diet prepartum consumed 1.2 kg/d more DM postpartum but did not produce more milk (41.6 vs. 43.1 kg/d). Thus, PP cows fed the EXE diet prepartum were in greater mean negative energy balance, tended to have greater mean concentrations of circulating insulin, fatty acids, and β-hydroxybutyrate, and had greater triacylglycerol in liver tissue (8.3 vs. 10.7% of DM) compared with cows fed the MNE diet prepartum. Cows fed RPC in transition tended to produce more milk (43.5 vs. 41.3 kg/d) and energy-corrected milk (44.2 vs. 42.0 kg/d) without increasing DM intake (23.8 vs. 23.2 kg/d) during the first 15 wk PP, and tended to produce more milk over the first 40 wk PP (37.1 vs. 35.0 kg/d). Energy balance of cows fed RPC was more negative at wk 2, 3, and 6 PP, but mean circulating concentrations of fatty acids and β-hydroxybutyrate did not differ from those of cows not fed RPC. Despite differences in energy balance at 2 and 3 wk PP, mean concentration of hepatic triacylglycerol did not differ between RPC treatments. Feeding RPC reduced the daily prevalence of subclinical hypocalcemia from 25.5 to 10.5%, as defined by concentrations of total Ca of <8.0 mg/dL in serum in the first 7 d PP. Pregnancy at first artificial insemination tended to be greater for cows fed RPC (41.3 vs. 23.6%), but the proportion of pregnant cows did not differ by 40 wk PP. Heifers born from singleton calvings from cows fed RPC tended to experience greater daily gain between birth and 50 wk of age than heifers from cows not supplemented with RPC. Feeding RPC for approximately 38 d during the transition period tended to increase yield of milk for 40 wk regardless of amount of energy consumed during the pregnant, nonlactating period.  相似文献   

16.
Increasing the availability of glucogenic nutrients relative to lipogenic nutrients has been hypothesized to decrease the production of milk fat, to improve the energy balance (EB), and to decrease the incidence and severity of metabolic and reproductive disorders in dairy cows in early lactation. Therefore, our objective was to evaluate the effects of a glucogenic, lipogenic, or mixed diet on EB, plasma metabolites and metabolic hormones, liver triacylglycerides (TAG), and reproductive variables in high-producing dairy cows in early lactation. Cows (n = 114) were randomly assigned to 1 of 3 diets and were fed either a mainly lipogenic diet, a mainly glucogenic diet, or a mixture of both diets (50:50 dry matter basis) from wk 3 before the expected calving date until 9 wk postpartum. Diets were isocaloric (net energy basis) and equal in intestinal digestible protein. Dry matter intake, net energy intake, milk yield, and milk protein percentage did not differ among diets. Milk lactose percentage was less for cows fed the lipogenic diet. Milk fat percentage was less for multiparous cows fed the glucogenic diet compared with cows fed the mixed or lipogenic diet (3.69 vs. 4.02 vs. 4.22 ± 0.07%, respectively). The calculated EB was less negative for multiparous cows fed the glucogenic diet compared with cows fed the mixed or lipogenic diet [−33 vs. −125 vs. −89 ± 21 kJ/(kg0.75 · d), respectively]. Postpartum, the glucogenic diet decreased plasma nonesterified fatty acids, β-hydroxybutyrate, and liver TAG concentrations and increased insulin concentration in multiparous cows. The glucogenic diet tended to decrease the number of days until first milk progesterone rise in multiparous cows compared with the mixed or lipogenic diet (20.4 vs. 24.4 vs. 26.4 ± 2.1 d, respectively). Diet had no effect on any of the above-mentioned variables in primiparous cows, except that milk lactose percentage was greater for primiparous cows fed the glucogenic diet. We concluded that the glucogenic diet was effective in improving the calculated EB and decreasing plasma β-hydroxybutyrate and liver TAG concentrations, suggesting a reduced risk of metabolic disorders in multiparous dairy cows fed a glucogenic diet.  相似文献   

17.
A total of 90 lactating Holstein cows averaging 628 kg (SE = 8) of body weight (BW) were allotted at calving to 30 groups of three cows blocked for similar calving dates to determine the effects of feeding whole untreated flaxseed on milk production and composition, fatty acid composition of blood and milk, and digestibility, and to determine whether flaxseed could substitute for other sources of fat such as Megalac and micronized soybeans. Cows were fed a total mixed diet based on grass and corn silage and fat supplements for ad libitum intake. The experiment was carried out from calving up to wk 16 of lactation. Cows within each block were assigned to one of the three isonitrogenous, isoenergetic, and isolipidic supplements based on either whole flaxseed (FLA), Megalac (MEG), or micronized soybeans (SOY). Intake of dry matter and change in BW were similar among diets. Cows fed FLA had greater milk yield than those fed MEG (35.7 vs. 33.5 kg/d) and there was no difference between cows fed FLA and those fed SOY (34.4 kg/d). Fat percentage was higher in the milk of cows fed MEG (4.14%) than in the milk of those fed FLA (3.81%) or SOY (3.70%), but milk protein percentage was higher for cows fed FLA (2.98%) than for those fed MEG (2.86%) and SOY (2.87%). Digestibilities of acid detergent fiber, neutral detergent fiber, and ether extract were lower for cows fed FLA than for those fed SOY and MEG. Retention of N was similar among diets. Feeding FLA resulted in the lowest omega-6-to-omega-3-fatty-acids ratio, which would improve the nutritive value of milk from a human health point of view. The data suggest that micronized soybeans and Megalac can be completely substituted by whole untreated flaxseed as the fat source in the diet of early lactating cows without any adverse effect on production and that flaxseed increased milk protein percentage and its omega-6-to-omega-3-fatty-acids ratio.  相似文献   

18.
《Journal of dairy science》2021,104(10):10727-10743
Feeding yeast culture fermentation products has been associated with improved feed intake and milk yield in transition dairy cows. These improvements in performance have been further described in terms of rumen characteristics, metabolic profile, and immune response. The objective of this study was to evaluate the effects of a commercial yeast culture product (YC; Culture Classic HD, Phibro Animal Health) on performance, blood biomarkers, rumen fermentation, and rumen bacterial population in dairy cows from −30 to 50 d in milk (DIM). Forty Holstein dairy cows were enrolled in a randomized complete block design from −30 to 50 DIM and blocked according to expected calving day, parity, previous milk yield, and genetic merit. At −30 DIM, cows were assigned to either a basal diet plus 114 g/d of ground corn (control; n = 20) or a basal diet plus 100 g/d of ground corn and 14 g/d of YC (n = 20), fed as a top-dress. Cows received the same close-up diet from 30 d prepartum until calving [1.39 Mcal/kg of dry matter (DM) and 12.3% crude protein (CP)] and lactation diet from calving to 50 DIM (1.60 Mcal/kg of DM and 15.6% CP). Blood samples and rumen fluid were collected at various time points from −30 to 50 d relative to calving. Cows fed YC compared with control showed a trend for increased energy-corrected milk (+3.2 kg/d). Lower somatic cell counts were observed in YC cows than in control. We detected a treatment × time interaction in nonesterified fatty acids (NEFA) that could be attributed to a trend for greater NEFA in YC cows than control at 7 DIM, followed by lower NEFA in YC cows than control at 14 and 30 DIM. In the rumen, YC contributed to mild changes in rumen fermentation, mainly increasing postpartal valerate while decreasing prepartal isovalerate. This was accompanied by alterations in rumen microbiota, including a greater abundance of cellulolytic (Fibrobacter succinogenes) and lactate-utilizing bacteria (Megasphaera elsdenii). These results describe the potential benefits of supplementing yeast culture during the late pregnancy through early lactation, at least in terms of rumen environment and performance.  相似文献   

19.
The objective of this study was to investigate the use of red clover (RC) silage as a forage for dry dairy cows, primarily relative to its impact on tissue mobilization and repletion during the transition period and performance during the first 10 wk of lactation. Forty multiparous lactating Holstein-Friesian dairy cows were divided into 2 paired groups at 70 d before predicted calving dates; a subset (n = 8) of the cows were used for N and P balance measurements twice during the study. From the start of the experiment until 4 wk before predicted calving date all cows were offered ad libitum access to a ryegrass (RG) silage with no concentrate. At 4 wk before predicted calving date, one group of cows remained on the same diet, and the other group was changed to a diet of ad libitum access to RC silage. There was no difference in feed intakes, but CP intake was higher in cows fed RC silage, whereas ME intake was higher in cows fed RG silage. Cows fed RG silage gained more weight over the last 4 wk of the dry period (DP) than those fed RC silage, but there was no treatment effect on BCS. During the DP fecal N excretion was higher for cows fed RC silage, and there were no treatment differences in urine N excretion or overall N balance. At birth, calves from cows fed the RC silage were heavier. After calving, all cows were offered the same diet of ad libitum access to the same RG silage and a standard lactation concentrate. During the first 10 wk of lactation there was no difference in feed intake between the 2 previous treatment groups, and feed intake reached a maximum at approximately 4 wk of lactation. Cows on the RG treatment during the DP gained more longissimus dorsi muscle depth during the DP and retained it during early lactation. Mobilization of this muscle occurred before calving, indicating repartitioning of amino acids to other body tissues. There were no carryover effects of DP treatment on apparent partitioning of N from diet to milk, urine, or feces at wk 3 of lactation. Feeding RC silage during the DP had almost no impact on subsequent performance of dairy cows in early lactation, probably because the 2 silages were nutritionally very similar.  相似文献   

20.
Our objectives were to determine if dietary cation-anion difference (DCAD) and source of anions influence periparturient feed intake and milk production of dairy cattle during the transition period. Diets differed in DCAD (cationic or anionic) and anionic supplement. The 4 diets used prepartum were (1) control [DCAD +20 mEq/100 g of dry matter (DM)], (2) Bio-Chlor (DCAD −12 mEq/100 g of DM; Church & Dwight Co. Inc., Princeton, NJ), (3) Fermenten (DCAD −10 mEq/100 g of DM; Church & Dwight Co. Inc.), and (4) salts (DCAD −10 mEq/100 g of DM). Urine pH was lower for cows that consumed an anionic diet prepartum compared with control. Prepartum diet had no effect on prepartum dry matter intake (DMI) of multiparous or primiparous cows. Postpartum DMI and milk yield for multiparous cows fed anionic diets prepartum were greater compared with those fed the control diet. Postpartum DMI and milk yield of primiparous cows were similar for prepartum diets. Feeding prepartum anionic diets did not affect plasma Ca at or near calving. However, cows fed anionic diets began their decline in plasma Ca later than control cows. Postpartum β-hydroxybutyrate and nonesterified fatty acids were lower for primiparous cows fed prepartum anionic diets compared with those fed the control diet. Prepartum and postpartum plasma glucose concentrations were not affected by prepartum diet for all cows. Liver triglyceride differed for parity by day. Parities were similar at 21 d prepartum, but at 0 d and 21 d postpartum, levels were greater for multiparous cows. Results indicate that decreasing the DCAD of the diet during the prepartum period can increase postpartum DMI and milk production of multiparous cows without negatively affecting performance of primiparous cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号