首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effect of monopropylene glycol (MPG) supplementation on LH secretion, postpartum interval to first ovulation, and milk production in heifers calving with poor body condition score (BCS). Forty-seven heifers were allocated to 3 treatments: 1) heifers with high BCS (BCH; n = 13) that calved at a BCS of 3.4 (BCS scale of 1 to 5); 2) heifers with low BCS (BCL; n = 17) that calved at a BCS of 2.8; and 3) heifers with low BCS that calved at a BCS of 2.8 and were assigned to receive MPG supplementation (BCL + MPG; n = 17) and grazed pasture ad libitum. Monopropylene glycol was drenched (250 mL) twice daily for 16 wk after calving. Patterns of change in plasma LH were measured at 2 and 5 wk after calving. Pulsatile release of LH at 2 and 5 wk was greater in BCL + MPG and BCH cows compared with the BCL control cows. The BCL + MPG cows had lower NEFA concentrations than did the BCL cows during wk 1 to 6 after calving. At 12 wk postpartum, the proportion of cows cycling was 77, 82, and 28% for the BCH, BCL + MPG, and BCL treatments, respectively. Mean milk fat yield was greater for the BCH treatment during the first 12 wk postpartum compared with the BCL + MPG or BCL treatments, which did not differ from each other. Results of this study indicate that MPG supplementation reduced the interval from calving to first ovulation in heifers having poor body condition at calving.  相似文献   

2.
Twenty-seven multiparous Jersey cows were randomly assigned to receive an oral bolus containing corn starch (control, CON), corn starch plus 15 mg of 25-hydroxyvitamin D3 (25-OH), or 15 mg of cholecalciferol (D3) at 6 d before expected parturition. Cows were maintained in individual box stalls from 20 d before expected parturition and fed a common diet. Jugular blood samples were collected at −14, −13, −5, −4, −3, −2, −1 d before expected calving, at calving, and at 1, 3, 5, 7, 9, 11, 13, 28, 56, and 84 d postcalving. After calving, cows were housed in 1 pen in a free-stall barn and consumed a common diet. Colorimetric assays were used to analyze Ca, P, and Mg concentrations in serum. Serum concentrations of osteocalcin (OC), an indicator of bone formation, serum 25-hydroxyvitamin D3, and parathyroid hormone (PTH) were determined in samples obtained from d −5 through d 13. The 9 control multiparous cows and 5 untreated primiparous cows were used to evaluate the effect of parity on the variables that were measured. There was no effect of parity on Ca, PTH, or 25-OH concentration. Compared with second-lactation cows and older cows (>2 lactations), first-lactation cows had greater serum OC (22.3, 32.0, and 48.3 ng/mL, respectively), indicating that younger animals were forming more bone. Blood Ca, P, and Mg decreased near the time of calving and then increased over time. Serum 25-hydroxyvitamin D3 was greater for cows dosed with 25-OH (119.0 ng/mL) compared with those dosed with D3 (77.5 ng/mL) or CON (69.3 ng/mL). Cows dosed with 25-OH tended to have lower serum PTH concentration, but treatments did not affect serum Ca, P, or Mg. Serum OC was greater in second-lactation cows compared with cows entering their third or fourth lactation but OC was unaffected by treatment. Although results indicated a 60% increase in serum 25-hydroxyvitamin D3 due to a single oral dose of 25-OH before calving, the amount administered in this study apparently was not sufficient for initiation of any improvement in Ca homeostasis at parturition.  相似文献   

3.
The aim of this study was to compare the reproductive performance of dairy cows subjected to early (ER) or late (LR) resynchronization programs after nonpregnancy diagnoses based on either pregnancy-associated glycoproteins (PAG) ELISA or transrectal palpation, respectively. In addition, the accuracy of the PAG ELISA for early pregnancy diagnosis was assessed. Lactating Holstein cows were subjected to a Presynch-Ovsynch protocol with timed artificial insemination (AI) performed between 61 and 74 DIM. On the day of the first postpartum AI, 1,093 cows were blocked by parity and assigned randomly to treatments; however, because of attrition, 452 ER and 520 LR cows were considered for the statistical analyses. After the first postpartum AI, cows were observed daily for signs of estrus and inseminated on the same day of detected estrus. Cows from ER that were not reinseminated in estrus received the first GnRH injection of the Ovsynch protocol for resynchronization 2 d before pregnancy diagnosis. On d 28 after the previous AI (d 27 to 34), pregnancy status was determined by PAG ELISA, and nonpregnant cows continued on the Ovsynch protocol for reinsemination. Pregnant cows had pregnancy status reconfirmed on d 46 after AI (d 35 to 52) by transrectal palpation, and those that lost the pregnancies were resynchronized. Cows assigned to LR had pregnancy diagnosed by transrectal palpation on d 46 after AI (d 35 to 52) and nonpregnant cows were resynchronized with the Ovsynch protocol. Blood was sampled on d 28 after AI (d 27 to 34) from cows in both treatments that had not been reinseminated on estrus and again on d 46 after AI (d 35 to 52) for assessment of PAG ELISA to determine the accuracy of the test. Cows were subjected to treatments for 72 d after the first insemination. Pregnancy per AI (P/AI) at first postpartum timed AI did not differ between treatments and averaged 28.9%. The proportion of nonpregnant cows that were resynchronized and received timed AI was greater for ER than for LR (30.0 vs. 7.6%). Cows in ER had a shorter interval between inseminations when inseminated following spontaneous estrus (21.7 ± 1.1 vs. 27.8 ± 0.8 d) or after timed AI (35.3 ± 1.2 vs. 55.2 ± 1.4 d). Nevertheless, the ER did not affect the rate of pregnancy (adjusted hazard ratio = 1.23; 95% confidence interval = 0.94 to 1.61) or the median days postpartum to pregnancy (ER = 132 vs. LR = 140). A total of 2,129 PAG ELISA were evaluated. Overall, sensitivity, specificity, and positive and negative predictive values averaged 95.1, 89.0, 90.1, and 94.5%, respectively, and the accuracy was 92.1%. In conclusion, PAG ELISA for early diagnosis of pregnancy had acceptable accuracy, but early resynchronization after nonpregnancy diagnosis with PAG ELISA did not improve the rate of pregnancy or reduce days open in dairy cows continuously observed for estrus.  相似文献   

4.
Objectives were to develop a timed artificial insemination (TAI) resynchronization program to improve pregnancy per AI and to evaluate responses of circulating progesterone and pregnancy-associated glycoproteins in lactating cows. Cows (n = 1,578) were presynchronized with 2 injections of PGF, given 14 d apart starting on d 45 ± 3 postpartum, followed by Ovsynch [2 injections of GnRH 7 d before and 56 h after injection of PGF, TAI 16 h after second injection (d 0)]. The Resynch-treated cows received an intravaginal progesterone insert from d 18 to 25, GnRH on d 25, and pregnancy diagnosis on d 32, and nonpregnant cows received PGF2α., GnRH 56 h later, and TAI 16 h later (d 35). The control cows were diagnosed for pregnancy on d 32 and nonpregnant cows received GnRH, PGF 39 d after TAI, GnRH 56 h later, and TAI 16 h later (d 42). Pregnancy was reconfirmed on d 60 after AI. Ovarian structures were examined in a subset of cows at the time of GnRH and PGF injections. Blood samples for analyses of progesterone and pregnancy-associated glycoproteins were collected every 2 d from d 18 to 30 in 100 cows, and collection continued weekly to d 60 for pregnant cows (n = 43). Preenrollment pregnancies per AI on d 32 did not differ for cows subsequently treated as Resynch (45.8%, n = 814) and control (45.9%, n = 764), and pregnancy losses on d 60 were 6.7 and 4.0%, respectively. Resynchronized service pregnancy per AI (36%, n = 441; 39.5%, n = 412) and pregnancy losses (6.3 and 6.7%) did not differ for Resynch and control treatments, respectively. Days open for pregnant cows after 2 TAI were less for the Resynch treatment than for the control treatment (96.2 ± 0.82 vs. 99.5 ± 0.83 d). Cows in the Resynch treatment had more large follicles at the time of GnRH. The number of corpora lutea did not differ between treatments at the time of PGF. Plasma progesterone for pregnant cows was greater for Resynch cows than for control cows (18-60 d; 6.6 vs. 5.3 ng/mL), and plasma concentrations of progesterone on d 18 were greater for pregnant cows than for nonpregnant cows (5.3 vs. 4.3 ng/mL). Plasma pregnancy-associated glycoproteins during pregnancy were lower for cows in the Resynch treatment compared with control cows on d 39 (2.8 vs. 4.1 ng/mL) and 46 (1.3 vs. 3.0 ng/mL). Cows pregnant on d 32 that lost pregnancy by d 60 (n = 7) had lower plasma concentrations of pregnancy-associated glycoproteins on d 30 than cows that maintained pregnancy (n = 36; 2.9 vs. 5.0 ng/mL). Pregnancy-associated glycoproteins on d 30 (>0.33 ng/mL) were predictive of a positive d 32 pregnancy diagnosis (sensitivity = 100%; specificity = 90.6%). In conclusion, Resynch and control protocols had comparable pregnancy per AI for first and second TAI services, but pregnancy occurred 3.2 d earlier in the Resynch group because inseminations in the Resynch treatment began 7 d before those in the control treatment. Administration of an intravaginal progesterone insert, or GnRH, or both increased progesterone during pregnancy. Dynamics of pregnancy-associated glycoproteins were indicative of pregnancy status and pregnancy loss.  相似文献   

5.
The objectives of this study were to evaluate the effects of an intravaginal insert containing progesterone (CIDR, controlled internal drug releasing) administered in presynchronization and resynchronization protocols on cyclicity, detection of estrus, pregnancy rate, and pregnancy loss to first AI; reinsemination patterns; and pregnancy rates to second postpartum AI before and after the time of first-service pregnancy diagnosis in dairy cows. Holstein cows (n = 1,052) were blocked by parity and BCS at 3 ± 3 d in milk (study d 0 = day of calving) and assigned randomly to 1 of 3 presynchronization treatments. During the presynchronization programs, all cows received 2 injections of PGF2α, on study d 35 and 49. Cows enrolled in the control presynchronization treatment received AI after detected estrus from study d 49 to 62. Cows enrolled in the CIDR estrus-detection (CED) presynchronization treatment received a CIDR insert from study d 42 to 49 and AI on detection of estrus from d 49 to 62. Cows enrolled in the CIDR timed AI (CTAI) presynchronization treatment received the same treatment as CED, but were subjected to timed AI on study d 72 after the Ovsynch (GnRH, 7 d PGF2α, 2 d GnRH, 24 h timed AI) protocol. The control and CED cows not inseminated by study d 62 were enrolled in the Ovsynch protocol on the same day and received timed AI on study d 72. After first AI, cows were assigned to no resynchronization (RCON) or resynchronization with a CIDR insert (RCIDR) between 14 and 21 d after AI. Blood samples collected on study d 35, 49, and 62 were analyzed for concentrations of progesterone and cows were classified as anestrous when progesterone was <1.0 ng/mL in the first 2 samples. On study d 62, anestrous cows with progesterone ≥ 1.0 ng/mL were classified as having resumed cyclicity. Pregnancy was diagnosed at 31 and 60 d after first AI and at 42 d after second AI. A greater proportion of anestrous cows in CED and CTAI became cyclic by d 62 postpartum than control cows. Resynchronization with the CIDR insert increased the pregnancy rate at 31 d after first AI in CED and CTAI, and at 60 d after AI in all cows because of reduced pregnancy loss. These results indicate that presynchronization with the CIDR insert increased induction of cyclicity in anestrous cows and that resynchronization with the CIDR insert did not affect the reinsemination rate but did reduce pregnancy loss and increased the pregnancy rate at 60 d after first AI.  相似文献   

6.
In this study, maternal effects were described as age of dam at first and second calving, first-lactation body condition score (BCS) of the dam during gestation, and milk yield of the dam. The impact of these effects on first-lactation daughter BCS, fertility, and test-day milk yield was assessed. The effect of milk yield of dam on daughter 305-d yield in the latter's first 3 lactations was also investigated. The proportion of total phenotypic variance in daughter traits accounted for by maternal effects was calculated. Dams calving early for the first time (18 to 23 mo of age) had daughters that produced 4.5% more first-lactation daily milk, had 7% higher BCS, and had their first service 3 d earlier than cows whose dams calved late (30 to 36 mo). However, daughters of dams that calved early had difficulties conceiving as they needed 7% more inseminations and had a 7.5% higher return rate. Cows from second calvings of relatively young (36 to 41 mo) dams produced 6% more first-lactation daily milk, had 2% higher BCS, and showed a significantly better fertility profile than cows whose dams calved at a late age (47 to 55 mo). High maternal BCS during gestation had a favorable effect on daughter BCS, nonreturn rate, and number of inseminations per conception. However, it was also associated with a small decrease in daughter daily milk yield. Changes in dam BCS during gestation did not affect daughter performance significantly. Maternal effects of milk yield of the dam, expressed as her permanent environment during lactation, adversely affected daughter 305-d milk, fat, and protein yield. However, although the effect was significant, it was practically negligible (<0.3% of the mean). Finally, overall maternal effects accounted for a significant proportion of the total phenotypic variance of calving interval (1.4 ± 0.6%) and nonreturn rate (1.1 ± 0.5%).  相似文献   

7.
The objective of this study was to compare 2 strategies for resynchronization of ovulation based on nonpregnant diagnoses using transrectal ultrasonography or a pregnancy-associated glycoprotein (PAG) ELISA. Lactating Holstein cows (n = 1,038) were submitted for first postpartum timed artificial insemination (TAI) using a Presynch + Ovsynch protocol. After the initial breeding, cows were randomly assigned to initiate resynchronization 25 d (D25) or 32 d (D32) later. Pregnancy status of cows initiating Resynch 25 d after TAI was determined 27 d after TAI by using a PAG ELISA, whereas pregnancy status of cows initiating Resynch 32 d after TAI was determined 39 d after TAI using transrectal ultrasonography. Cows diagnosed as not pregnant continued the Resynch protocol by receiving an injection of PGF 7 d after the initial GnRH injection and a second GnRH injection 54 h after the PGF injection. Cows in both treatments were inseminated approximately 16 h after the second GnRH injection. Blood samples for analysis of progesterone (P4) were collected at the first GnRH injection of each Resynch protocol. Pregnancies per AI (P/AI) of nonpregnant cows initiating Resynch 25 vs. 32 d after first postpartum TAI did not differ 39 d after TAI and were 28.3 vs. 30.9% for D25 vs. D32 cows, respectively. Mean P4 at the first GnRH injection of Resynch was greater for D32 than for D25 cows (3.67 ± 0.22 vs. 2.83 ± 0.22 ng/mL), indicating that the Resynch treatments were initiated at different stages of the estrous cycle. After blocking P4 concentration into low (<1.0 ng/mL) or high (≥1.0 ng/mL) classes, P4 class was not found to affect P/AI 39 d after TAI. Early resynchronization was not found to affect P/AI 39 d after TAI; however, early resynchronization did decrease days between inseminations and the interval from the initial nonpregnant diagnosis to conception. Earlier detection of nonpregnant cows using the PAG ELISA in conjunction with a TAI resynchronization program may improve the rate at which cows become pregnant in a dairy herd compared with transrectal ultrasonography conducted at a later stage after TAI.  相似文献   

8.
The ruminant trophoblast produces pregnancy-associated glycoproteins (PAG) that can be detected in the blood of pregnant animals. The objective was to determine the accuracy of a rapid ELISA PAG-based test for the purpose of pregnancy detection in cattle. Blood was sampled from dairy cattle (539 Holstein cows, 173 Holstein heifers, 73 Guernsey cows, 22 Guernsey heifers, and 12 Jersey heifers) and crossbred beef cattle (145 cows and 46 heifers) that were ≥25 d after insemination (range = 25 to 45 d for dairy and 29 to 56 d for beef). Cattle were examined by ultrasonography for detection of pregnancy within 2 d of blood collection. Whole blood or plasma was incubated in a polystyrene tube coated with a monoclonal PAG antibody for 15 min. The tubes were then washed and subjected to sequential incubations with a biotinylated polyclonal PAG antibody (15 min, followed by wash), a horseradish peroxidase-streptavidin solution (15 min, followed by wash), and a peroxidase substrate. Tubes were visually assessed for color after 15 min (clear solution = PAG negative, not pregnant; blue solution = PAG positive, pregnant). Total assay time was approximately 90 min. The ultrasound examination was used as the standard for pregnancy diagnosis. The sensitivity (99.8 ± 0.2%), specificity (91.7 ± 1.4%), and negative predictive value (99.7 ± 0.3%) for the PAG test used in dairy cattle were similar for different breeds and for cows and heifers. The positive predictive value for the test was greater in dairy heifers than in dairy cows (96.5 ± 1.4% vs. 90.5 ± 1.7%, respectively). In beef cattle, the sensitivity (100%), specificity (92.3 ± 3.0%), positive predictive value (95.0 ± 2.0%), and negative predictive value (100%) for the PAG test were similar for cows and heifers. The accuracy of the test was not different for dairy and beef cattle. In conclusion, the rapid ELISA pregnancy test based on PAG was highly sensitive and specific for pregnancy detection in dairy and beef cattle.  相似文献   

9.
The objective of this study was to evaluate the effect of the Ovsynch protocol with and without exogenous progesterone on pregnancy rate (PR) in cows in which estrous cycles were previously synchronized with 2 doses of PGF2α and that were not detected in estrus during the presynchronization period. The study was conducted in Chihuahua, Mexico (8,650 Holstein milking cows; 305-d mature equivalent milk yield = 13,790 kg). On d 47 postpartum, estrous cycles in cows were synchronized by using 2 doses of PGF2α 14 d apart. Any cow detected in estrus during this presynchronization period was inseminated. Cows not detected in estrus were selected at random and assigned to receive progesterone supplementation or to serve as controls. Controls (n = 594) were subjected to the Ovsynch protocol and cows in the progesterone supplemented treatment (n = 594) were subjected to the Ovsynch protocol plus an intravaginal insert containing 1.9 g of progesterone inserted at the time of the first GnRH injection and removed 7 d later. Progesterone-supplemented cows had a greater PR (31.2%) compared with controls (22.7%). Plasma progesterone concentrations at artificial insemination (AI) were <1 ng/mL and did not differ between treatments. At 14 d post-AI, however, more cows that received progesterone supplementation had concentrations of progesterone >1 ng/mL compared with controls. It was concluded that after a presynchronization period, cows subjected to the Ovsynch program and supplemented with exogenous progesterone had a greater PR and greater concentrations of progesterone after AI than those subjected to the Ovsynch protocol and not supplemented with progesterone.  相似文献   

10.
The objectives of this study were to evaluate the effects of using sex-sorted semen for first AI of heifers on health and productivity during first lactation. Holstein heifers (herd A = 227 and herd B = 1,144) received first artificial insemination (AI) with sex-sorted semen (SX; n = 343) or conventional semen (CS; n = 1,028), and all heifers that displayed estrus after first AI were reinseminated with conventional semen up to 11 times before being culled. Age at first AI was 13.1 ± 0.1 and 13.8 ± 0.1 mo for SX and CS heifers, respectively, in herd A and 12.9 ± 0.1 mo for both SX and CS heifers in herd B. Pregnancy per AI after first AI was greater for CS heifers than for SX heifers (51.8 vs. 40.2%). From heifers initially enrolled, 70.2% calved in herds A (n = 188) or B (n = 774) and first-lactation data were collected. Interval from first AI to calving was greater for SX heifers than for CS heifers (10.2 ± 0.1 vs. 9.9 ± 0.1 mo). Among heifers conceiving to first AI, SX heifers were more likely than CS heifers to deliver a female calf (85.7 vs. 47.7%), but because SX heifers were more likely to deliver a dead calf (8.8 vs. 3.4%), the difference in proportion of SX and CS heifers delivering a live female calf was smaller than expected (SX = 79.1%; CS = 47.2%). Rearing cost from first AI to calving was greater for SX heifers than for CS heifers ($775.3 ± 6.7 vs. $750.0 ± 5.9), but calf revenue tended to be greater for SX heifers ($142.0 ± 7.2 vs. $126.7 ± 6.4) and cost per female calf produced was smaller for SX heifers than for CS heifers ($−809.4 ± 10.8 vs. $−1,249.7 ± 10.9). Treatment did not affect calving difficulty, proportion of heifers needing assistance, and incidence of retained fetal membranes or metritis. Among heifers that conceived to first AI, however, SX heifers were more likely to be culled within 30 DIM (3.3 vs. 1.6%) and tended to be more likely to be culled within 60 DIM (5.5 vs. 3.4%) than CS heifers, but overall replacement cost was not different ($136.8 ± 13.4). Total milk yield (9,245.5 ± 84.7 kg) and income over feed cost ($554.7 ± 5.1) were not different. Overall economic return was greater for SX heifers than CS heifers ($−83.7 ± 36.7 vs. −175.3 ± 33.4). Use of sex-sorted semen for first insemination of virgin heifers reduced the cost per female calf produced and increased the economic return during the first lactation.  相似文献   

11.
The objectives were to evaluate the effect of supplemental progesterone during a timed artificial insemination (TAI) protocol on pregnancy per insemination and pregnancy loss. Lactating dairy cows from 2 dairy herds were presynchronized with 2 injections of PGF 14 d apart, and cows observed in estrus following the second PGF injection were inseminated (n = 1,301). Cows not inseminated by 11 d after the end of the presynchronization were submitted to the TAI protocol (d 0 GnRH, d 7 PGF, d 8 estradiol cypionate, and d 10 TAI). On the day of the GnRH of the TAI protocol (study d 0), cows were assigned randomly to receive no exogenous progesterone (control = 432), one controlled internal drug-release (CIDR) insert (CIDR1 = 440), or 2 CIDR inserts (CIDR2 = 440) containing 1.38 g of progesterone each from study d 0 to 7. Blood was sampled on study d 0 before insertion of CIDR for determination of progesterone concentration in plasma, and cows with concentration <1.0 ng/mL were classified as low progesterone (LP) and those with concentration ≥1.0 ng/mL were classified as high progesterone (HP). From a subgroup of 240 cows, blood was sampled on study d 3, 7, 17 and 24 and ovaries were examined by ultrasonography on study d 0 and 7. Pregnancy was diagnosed at 38 ± 3 and 66 ± 3 d after AI. Data were analyzed including only cows randomly assigned to treatments and excluding cows that were inseminated after the second PGF injection. The proportion of cows classified as HP at the beginning of the TAI protocol was similar among treatments, but differed between herds. Concentrations of progesterone in plasma during the TAI protocol increased linearly with number of CIDR used, and the increment was 0.9 ng/mL per CIDR. The proportion of cows with plasma progesterone ≥1.0 ng/mL on study d 17 was not affected by treatment, but a greater proportion of control than CIDR-treated cows had asynchronous estrous cycles following the TAI protocol. Treatment with CIDR inserts, however, did not affect pregnancy at 38 ± 3 and 66 ± 3 d after AI or pregnancy loss.  相似文献   

12.
Progesterone profiles in Norwegian Red cows were categorized, and associations between the occurrence of irregularities in the profiles and the commencement of luteal activity were investigated. The cows were managed in 3 feeding trials from 1994 to 2001 and from 2005 to 2008 at the Norwegian University of Life Sciences. The cows were followed from calving, and the milk samples collected represented 502 lactations from 302 cows. Milk samples for progesterone analysis were taken 3 times weekly from 1994 throughout 1998 and from 2005 to 2008 and 2 times weekly from 1999 to 2001. Commencement of luteal activity was defined as the first day of 2 consecutive measurements of progesterone concentration ≥3 ng/mL not earlier than 10 d after calving. Delayed ovulation type I was defined as consistently low progesterone concentration, <3 ng/mL for ≥50 d postpartum. Delayed ovulation type II was defined as prolonged interluteal interval with milk progesterone measurements <3 ng/mL for ≥12 d between 2 luteal phases. Persistent corpus luteum (PCL) type I was defined as delayed luteolysis with milk progesterone ≥3 ng/mL for ≥19 d during the first estrous cycle postpartum. Persistent corpus luteum type II was defined as delayed luteolysis with milk progesterone ≥3 ng/mL for ≥19 d during subsequent estrous cycles before first artificial insemination. Delayed ovulation type I was present in 14.7%, delayed ovulation type II in 2.8%, PCL type I in 6.7%, and PCL type II in 3.3% of the profiles. Commencement of luteal activity was related to milk yield, parity, PCL type I, and the summated occurrence of PCL type I and II. The least squares means for the interval to commencement of luteal activity were 24.2 d when PCL type I and II were present and 29.5 d when PCL type I and II were absent. The likelihood of pregnancy to first service was not affected in cows with a history of PCL when artificial insemination was carried out at progesterone concentrations <3 ng/mL (i.e., during estrus); however, cows that had experienced PCL were more likely to be inseminated during a luteal phase. The occurrence of delayed ovulation and PCL in Norwegian Red cows was less than that reported in most other dairy populations.  相似文献   

13.
The objectives of the current study were to evaluate the effects of supplemental progesterone after artificial insemination (AI) on expression of IFN-stimulated genes (ISG) in blood leukocytes and fertility in lactating dairy cows. Weekly cohorts of Holstein cows were blocked by parity (575 primiparous and 923 multiparous) and method of insemination (timed AI or AI on estrus) and allocated randomly within each block to untreated controls, a controlled internal drug release (CIDR) containing 1.38 g of progesterone from d 4 to 18 after AI (CIDR4), or a CIDR on d 4 and another on d 7 after AI and both removed on d 18 (CIDR4+7). Blood was sampled to quantify progesterone concentrations in plasma and mRNA expression in leukocytes for the ubiquitin-like IFN-stimulated gene 15-kDa protein (ISG15) and receptor transporter protein-4 (RTP4) genes. Pregnancy was diagnosed on d 34 ± 3 and 62 ± 3 after AI. Treatment increased progesterone concentrations between d 5 and 18 after AI in a dose-dependent manner (control = 3.42, CIDR4 = 4.97, and CIDR4+7 = 5.46 ng/mL). Cows supplemented with progesterone tended to have increased luteolysis by d 19 after AI (control = 17.2; CIDR4 = 29.1; CIDR4+7 = 30.2%), which resulted in a shorter AI interval for those reinseminated after study d 18. Pregnancy upregulated expression of ISG in leukocytes on d 19 of gestation, but supplementing progesterone did not increase mRNA abundance for ISG15 and RTP4 on d 16 after insemination and tended to reduce mRNA expression on d 19 after AI. For RTP4 on d 19, the negative effect of supplemental progesterone was observed only in the nonpregnant cows. No overall effect of treatment was observed on pregnancy per AI on d 62 after insemination and averaged 28.6, 32.7, and 29.5% for control, CIDR4, and CIDR4+7, respectively. Interestingly, an interaction between level of supplemental progesterone and method of AI was observed for pregnancy per AI. For cows receiving exogenous progesterone, the lower supplementation with CIDR4 increased pregnancy per AI on d 62 in cows inseminated following timed AI (CIDR4 = 39.2; CIDR4+7 = 27.5%); in those inseminated following detection of estrus, however, the use of a second insert on d 7 resulted in greater pregnancy per AI (CIDR4 = 26.9; CIDR4+7 = 31.5%). Pregnancy loss did not differ among treatments. Supplemental progesterone post-AI using a single intravaginal insert on d 4 was beneficial to pregnancy in cows inseminated following timed AI, but incremental progesterone with a second insert on d 7 did not improve fertility of dairy cows.  相似文献   

14.
During November and December 2011, data were collected from 44 dairy operations in 13 Pennsylvania counties. Researchers visited each farm to collect information regarding management practices and feeding, and costs for labor, health, bedding, and reproduction for replacement heifers from birth until first calving. Costs per heifer were broken up into 4 time periods: birth until weaning, weaning until 6 mo of age, 6 mo of age until breeding age, and heifers from breeding to calving. Milk production records for each herd were obtained from Dairy Herd Improvement. The average number of milking cows on farms in this study was 197.8 ± 280.1, with a range from 38 to 1,708. Total cost averaged $1,808.23 ± $338.62 from birth until freshening. Raising calves from birth to weaning cost $217.49 ± 86.21; raising heifers from weaning age through 6 mo of age cost $247.38 ± 78.89; raising heifers from 6 mo of age until breeding cost $607.02 ± 192.28; and total cost for bred heifers was $736.33 ± 162.86. Feed costs were the largest component of the cost to raise heifers from birth to calving, accounting for nearly 73% of the total. Data envelopment analysis determined that 9 of the 44 farms had no inefficiencies in inputs or outputs. These farms best combined feed and labor investments, spending, on average, $1,137.40 and $140.62/heifer for feed and labor. These heifers calved at 23.7 mo of age and produced 88.42% of the milk produced by older cows. In contrast, the 35 inefficient farms spent $227 more on feed and $78 more on labor per heifer for animals that calved 1.6 mo later and produced only 82% of the milk made by their mature herdmates. Efficiency was attained by herds with the lowest input costs, but herds with higher input costs were also able to be efficient if age at calving was low and milk production was high for heifers compared with the rest of the herd.  相似文献   

15.
Two experiments evaluated the influence of follicular wave at artificial insemination (AI) on fertility of dairy cows. In experiment 1, data from 5,607 lactating cows enrolled in estrous and ovulation synchronization programs for AI were evaluated. Cows’ blood was analyzed for progesterone 7 to 14 d apart, with the second sample collected on the day of the first GnRH (GnRH1) of the synchronization protocol. Cows were classified as cyclic if progesterone was ≥1 ng/mL in at least 1 of the 2 samples and as anovular if both samples were <1 ng/mL. Cyclic cows were categorized as low (CLOW; < 1 ng/mL) or high (CHIGH; ≥ 1 ng/mL) progesterone on the day of GnRH1, which would result in ovulation of the dominant follicle of the first (FW) and second (SW) follicular waves, respectively, at AI. Pregnancy per AI (P/AI) was determined 30 and 53 d after AI. In experiment 2, 220 cyclic Holstein cows received 2 injections of PGF administered 14 d apart. The Ovsynch protocol (d 0 GnRH, d 7 PGF, d 9 GnRH, d 9.5 timed AI) was initiated either 3 or 10 d after the second PGF of the presynchronization to result in insemination to the FW or SW dominant follicles. Blood was analyzed for progesterone and ovaries were scanned to determine ovulatory responses and follicle diameter. Pregnancy was determined on d 32 and 67 after timed AI. In experiment 1, P/AI on d 30 was greater for CHIGH cows than for CLOW and anovular cows (43.0, 31.3, and 29.7%, respectively), but because of pregnancy loss, P/AI on d 53 was lowest for anovular cows. Proportions of cows with short reinsemination intervals differed among groups and were 7.1, 15.7, and 11.9% for CHIGH, CLOW, and anovular cows, respectively. Pregnancy loss was greater for anovular cows than for CLOW cows (15.0 vs. 10.0%) and was intermediate for CHIGH cows (13.5%). In experiment 2, 9.8 and 97.2% of the FW and SW cows, respectively, had progesterone ≥1 ng/mL at GnRH1. Concentrations of progesterone at the GnRH1 and PGF injections of the Ovsynch protocol were greater for SW cows than FW cows. Pregnancy per AI was greater for SW cows than for FW cows (41.7 vs. 30.4%) despite less ovulation to GnRH1 in SW cows than in FW cows (78.7 vs. 88.4%). Collectively, these data indicate that follicular wave of the ovulatory follicle and not cyclic status caused the greatest reduction in P/AI in dairy cows. Whether the culprit is the follicle itself or the hormonal milieu characteristic of the first follicular wave and the early stage of the estrous cycle remains to be elucidated. Synchronization programs that induced ovulation of the FW follicle at AI reduced P/AI in lactating dairy cows, and ovulation of the FW follicle, or development of the ovulatory follicle under low progesterone concentrations, or both, might be mechanisms for reduced fertility in anovular cows.  相似文献   

16.
Our objective was to determine the accuracy of identifying noncycling lactating dairy cows before the application of a timed artificial insemination (AI) protocol [with or without progesterone supplementation via a controlled internal drug-release (CIDR) insert and 2 different timings of AI] by using heatmount detectors and a single ovarian ultrasound examination. At 6 locations in the Midwest, 1,072 cows were enrolled in a Presynch protocol (2 injections of PGF 14 d apart), with the second injection administered 14 d before initiating the Ovsynch protocol (injection of GnRH 7 d before and 48 h after PGF injection, with timed AI at 0 or 24 h after the second GnRH injection). Heatmount detectors were applied to cows just before the first Presynch injection, assessed 14 d later at the second Presynch injection (replaced when activated or missing), and reassessed at initiation of the Ovsynch protocol. Ovaries were examined for the presence of a corpus luteum (CL) by ultrasound before the initiation of treatment. Treatments were assigned to cows based on the presence or absence of a CL detected by ultrasound: 1) no CL + no CIDR; 2) no CL + CIDR insert for 7 d; and 3) CL present. Further, alternate cows within the 3 treatments were assigned to be inseminated concurrent with the second GnRH injection of Ovsynch (0 h) or 24 h later. Pregnancy was diagnosed at 33 and 61 d after the second GnRH injection. By using low (<1 ng/mL) concentrations of progesterone in serum as the standard for noncycling status, heatmount detectors were activated on a large percentage of noncycling cows (>60%), whereas the single ultrasound examination incorrectly classified noncycling cows only 21% of the time. Conversely, cycling cows (progesterone ≥1 ng/mL) were correctly identified 70 to 78% of the time by heatmount detectors, but 85 to 92% were correctly identified by ultrasound. Overall accuracy of heatmount detectors and ultrasound was 71 and 84%, respectively. Application of progesterone to cows without a CL at the time of the first injection of GnRH reduced the incidence of ovulation but increased the proportions of pregnancies per AI at d 33 or 61 compared with nontreated cows without a CL at the onset of the Ovsynch protocol. Percentages of cows pregnant and pregnancy survival did not differ for cows having a CL before treatment compared with those not having a CL and treated with progesterone. Compared with no response, when a follicle ovulated in response to the first GnRH injection, percentage of cows becoming pregnant after the timed AI increased from 33.3 to 41.6%. Timing of AI at 0 or 24 h after the second GnRH injection did not alter pregnancies per AI, but cows having luteal activity before treatment had improved pregnancies per AI compared with noncycling cows. We conclude that identifying noncycling cows by ultrasound was more accurate than by heatmount detectors. Subsequent progesterone treatment of previously cycling cows not having a CL at the onset of Ovsynch increased the proportion of pregnant cows, equal to that of cows having a CL but not treated with progesterone.  相似文献   

17.
A database of milk progesterone profiles consisting 497 lactations in 3 dairy herds from northern and western regions of Japan was used to identify the characteristics and associated risk factors for prolonged luteal phase (PLP) and its effects on subsequent reproductive performance in high-producing Holstein cows. Milk samples were collected twice weekly and progesterone concentrations in whole milk were determined by ELISA. Herds were visited monthly and examined by vaginoscopy and transrectal palpation. Resumption of ovarian cyclicity within 35 d postpartum followed by regular cycles was considered normal. Prolonged luteal phase was defined when progesterone concentrations were ≥5 ng/mL for ≥20 d of duration in any cycle postpartum. Delay of first ovulation to 35 to 60 d (delayed first ovulation type I), >60 d (delayed first ovulation type II), a luteal phase of <14 d except in the first cycle (short luteal phase), and the absence of luteal activity >14 d between 2 cycles (cessation of cyclicity) were the other categories of abnormal ovarian resumptions considered. The overall incidence of PLP in the 3 herds was 11.9% and a significantly higher proportion of PLP was observed in the first cycle postpartum compared with the second and third cycles. Approximately 83% of the PLP were 20 to 28 d in duration, and maximum progesterone concentration was significantly higher when PLP lasted >35 d compared with PLP of 20 to 35 d in duration. Higher parity, commencement of luteal activity ≤28 d postpartum, and postpartum complications significantly increased the occurrence of PLP within 90 d postpartum. Cows with PLP showed reduced conception rate to first artificial insemination (AI) and reduced pregnancy proportions within 100, 150, and 210 d postpartum. Based on survival analysis, PLP was associated with a 56% reduction in relative pregnancy rate and a 36% reduction in AI submission rate. Cows that experienced PLP had a longer interval from calving to first AI (74 d) and from calving to pregnancy (141 d) than cows without PLP (53 and 80 d), respectively. In conclusion, 11.9% of lactations had PLP, of which approximately two-thirds were seen in the first cycle postpartum. Most of the PLP were 20 to 28 d in duration. Higher parity, postpartum complications, and early commencement of luteal activity postpartum increased the risk for PLP. Occurrence of PLP adversely affected fertility by reducing pregnancy proportions and extending calving to conception interval.  相似文献   

18.
Our objective was to determine the effect of exogenous progesterone (P4) during a timed artificial insemination (TAI) protocol on pregnancies per AI (P/AI) in dairy cows not previously detected in estrus. Lactating cows (n = 3,248) from 7 commercial dairy herds were submitted to a presynchronization protocol (2 injections of PGF 14 d apart; Presynch), and cows in estrus after the second PGF received AI (EDAI; n = 1,583). Cows not inseminated by 12 to 14 d after the second PGF injection were submitted to a TAI protocol (GnRH on d 0, PGF on d 7, and GnRH + TAI 72 h after PGF). At onset of the TAI protocol, cows were balanced by parity and days in milk and assigned randomly to receive no exogenous P4 (control, n = 803) or a controlled internal drug release (CIDR) insert containing 1.38 g of P4 from d 0 to 7 (CIDR, n = 862). Blood samples were collected at the second PGF injection of the Presynch and on the day of the first GnRH injection of the TAI protocol for P4 determination. When P4 in both samples was <1 ng/mL, cows were classified as anovular, whereas cows having at least 1 sample ≥1 ng/mL were classified as cyclic. Concentration of P4 at 11 to 14 d after AI was determined in a subgroup of cows (n = 453) from 2 herds. Pregnancy was diagnosed at 40 ± 5 and 65 ± 5 d after AI. Proportion of cows inseminated on estrus after the second PGF injection of the Presynch protocol differed among herds (range = 26.7 to 59.8%). Overall P/AI for EDAI cows at 40 ± 5 and 65 ± 5 d were 36.2 and 33.7%, respectively, and pregnancy loss was 8.8%. Proportion of cyclic cows at the onset of the TAI protocol differed among herds (range from 66.5 to 86.3%), but did not differ between treatments (control = 72.4%, CIDR = 74.1%). Treatment affected P/AI at 40 ± 5 (control = 33.3%, CIDR = 38.1%) and 65 ± 5 (control = 30.0%, CIDR = 35.1%) d after AI but did not affect pregnancy loss (8.6%). Cyclic cows had greater P/AI at 40 ± 5 (38.2 vs. 29.3%) and 65 ± 5 d (35.1 vs. 26.1%) after AI, but cyclic status had no effect on pregnancy loss. Treatment affected P4 concentration after AI, with more CIDR cows having P4 ≥1 ng/mL (94.4 vs. 86.9%) and P4 ≥3.2 ng/mL (81.8 vs. 68.0%) at 11 to 14 d after AI compared with control cows. Treatment of cows not previously detected in estrus with a CIDR insert during a TAI protocol increased proportion of cows with functional CL after AI and P/AI.  相似文献   

19.
Our objectives were to compare reproductive responses of dairy cows receiving timed artificial insemination (AI) either at 48 or 72 h after induction of luteolysis and supplemented or not with estradiol cypionate (ECP). Holstein cows (971) had their estrous cycles presynchronized with injections of PGF at 37 and 51 d in milk (DIM) and then received an injection of GnRH at 64 DIM and an injection of PGF at 71 DIM. Cows were then assigned to a 2 × 2 factorial randomized block experiment; cows in the CoSynch 48 h (CoS48) received a final injection of GnRH concurrent with timed AI 48 h after PGF, whereas cows in the CoSynch 72 h (CoS72) received GnRH and timed AI 72 h after PGF. Half of the cows in each CoSynch protocol received an injection of 1 mg of ECP 24 h after PGF. Therefore, the 4 treatments were as follows: CoS48-NECP (n = 240), CoS72-NECP (n = 246), CoS48-ECP (n = 245), and CoS72-ECP (n = 240). Blood was sampled at 7 d before and at the first GnRH of the CoSynch from all cows for analysis of progesterone concentration in plasma. Cows were classified as anovular when progesterone was less than 1.0 ng/mL in both samples. Blood was also sampled during proestrus from a subset of 123 cows to measure concentrations of estradiol and at 7 d after timed AI to measure concentrations of progesterone. Ovaries from the same subset of 123 cows were examined by ultrasonography to determine ovulatory follicle diameter and incidence of ovulation. Pregnancy was diagnosed at 40 and 68 d after AI. Prevalence of cyclic cows was 72.4% and was similar among treatments. Concentrations of estradiol increased after ECP treatment and at 72 h of proestrus with CoS72. Pregnancy at 40 and 68 d after AI and pregnancy loss were not affected by timing of AI or supplemental ECP. Delaying timed AI to 72 h and supplementation with ECP increased the proportion of cows displaying estrus at AI, and cows detected in estrus had increased pregnancy per AI associated with improved ovulation and increased postovulatory progesterone concentration. These results indicate that extending the proestrus by delaying timed AI from 48 to 72 h plus supplemental ECP, despite increased expression of estrus at timed AI, did not improve reproductive performance of lactating dairy cows at first AI.  相似文献   

20.
The working hypothesis was that postpartum anovulatory intervals (PPAI) of grazing dairy cows are shortened by inclusion of concentrates that increase the nonstructural carbohydrate content of the transition diet. Dietary treatments were arranged as a 2 × 2 factorial, with 68 multiparous cows assigned to isoenergetic diets (114 MJ of metabolizable energy/cow per day) of pasture and pasture silage (PreP) or pasture and pasture silage supplemented with 3 kg of dry matter/cow per day a corn- and barley-based concentrate for 36 d prepartum (PreC). After calving, cows within each prepartum diet group were managed on isoenergetic diets (179 MJ of metabolizable energy/cow per day) of either pasture and pasture silage (PostP) or pasture and pasture silage supplemented with 5 kg of dry matter/cow per day a corn- and barley-based concentrate (PostC) for at least 35 d and until reestablishment of ovulatory cycles. Relative to day of calving (d 0), blood samples were collected at least weekly from d −28 to 35 and milk samples were collected twice weekly for progesterone determination to diagnose ovulatory status. The main variable of interest was PPAI, defined as the interval between calving and the first detected increase in milk progesterone (>3 ng/mL), followed by a pattern of progesterone concentrations consistent with onset of an ovulatory cycle. Subsequent mating records, pregnancy testing, and recalving data were also examined. Prepartum diet did not affect reproduction. The PPAI was 8 d shorter and the 6-wk pregnancy rate was 17% greater in PostC cows compared with PostP cows. Measured indicators of metabolic state and energy balance were poorly related to PPAI. The results support the existence of nutritional signals associated with nonstructural carbohydrates in the postpartum diet, independent of energy balance; these signals benefit the physiological mechanisms underlying the timing of first ovulation and possibly subsequent breeding performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号