首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using a mixed linear animal model, genetic parameters were estimated for clinical mastitis (MAST), lactation average somatic cell score (LSCS), and milk production traits in the first 3 lactations of more than 200,000 Swedish Holstein cows with first calving from 1995 to 2000. Heritability estimates for MAST (0.01 to 0.03) were distinctly lower than those for LSCS (0.10 to 0.14) and production traits (0.23 to 0.36). The genetic correlation between MAST and LSCS was high for all lactations (mean 0.70), implying that selection for low LSCS will reduce the incidence of mastitis. Undesirable genetic relationships with production were found for both MAST and LSCS with genetic correlations ranging from 0.01 to 0.45. This emphasizes the need for including udder health traits in the breeding goal. Genetic correlations across lactations for the same trait were positive and high for both MAST (>0.7), LSCS (>0.8), and production traits (>0.9), with the strongest correlations between second and third parity for all traits (>0.9 for udder health traits and close to unity for production traits).  相似文献   

2.
The objectives of this study were to examine genetic associations between clinical mastitis and somatic cell score (SCS) in early first-lactation cows, to estimate genetic correlations between SCS of cows with and without clinical mastitis, and to compare genetic evaluations of sires based on SCS or clinical mastitis. Clinical mastitis records from 15 d before to 30 d after calving and first test-day SCS records (from 6 to 30 d after calving) from 499,878 first-lactation daughters of 2,043 sires were analyzed. Results from a bivariate linear sire model analysis of SCS in cows with and without clinical mastitis suggest that SCS is a heterogeneous trait. Heritability of SCS was 0.03 for mastitic cows and 0.08 for healthy cows, and the genetic correlation between the 2 traits was 0.78. The difference in rank between sire evaluations based on SCS of cows with and without clinical mastitis varied from −994 to 1,125, with mean 0. A bivariate analysis with a threshold-liability model for clinical mastitis and a linear Gaussian model for SCS indicated that heritability of liability to clinical mastitis is at least as large as that of SCS in early lactation. The mean (standard deviation) of the posterior distribution of heritability was 0.085 (0.006) for liability to clinical mastitis and 0.070 (0.003) for SCS. The posterior mean (standard deviation) of the genetic correlation between liability to clinical mastitis and SCS was 0.62 (0.03). A comparison of sire evaluations showed that genetic evaluation based on SCS was not able to identify the best sires for liability to clinical mastitis. The association between sire posterior means for liability to clinical mastitis and sire predicted transmitting ability for SCS was far from perfect.  相似文献   

3.
The dataset used in this analysis contained a total of 341,736 test-day observations of somatic cell scores from 77,110 primiparous daughters of 1965 Norwegian Cattle sires. Initial analyses, using simple random regression models without genetic effects, indicated that use of homogeneous residual variance was appropriate. Further analyses were carried out by use of a repeatability model and 12 random regression sire models. Legendre polynomials of varying order were used to model both permanent environmental and sire effects, as did the Wilmink function, the Lidauer-M?ntysaari function, and the Ali-Schaeffer function. For all these models, heritability estimates were lowest at the beginning (0.05 to 0.07) and higher at the end (0.09 to 0.12) of lactation. Genetic correlations between somatic cell scores early and late in lactation were moderate to high (0.38 to 0.71), whereas genetic correlations for adjacent DIM were near unity. Models were compared based on likelihood ratio tests, Bayesian information criterion, Akaike information criterion, residual variance, and predictive ability. Based on prediction of randomly excluded observations, models with 4 coefficients for permanent environmental effect were preferred over simpler models. More highly parameterized models did not substantially increase predictive ability. Evaluation of the different model selection criteria indicated that a reduced order of fit for sire effects was desireable. Models with zeroth- or first-order of fit for sire effects and higher order of fit for permanent environmental effects probably underestimated sire variance. The chosen model had Legendre polynomials with 3 coefficients for sire, and 4 coefficients for permanent environmental effects. For this model, trajectories of sire variance and heritability were similar assuming either homogeneous or heterogeneous residual variance structure.  相似文献   

4.
Electrical conductivity (EC) of milk has been introduced as an indicator trait for mastitis during the last few decades. The correlation of EC to mastitis, easy access to EC data, and the low cost of recording are properties that make EC a good indicator trait for mastitis. In this study, EC was measured daily during the lactation and available from 2101 first-lactation Holstein cows in 8 herds in the United States. Data were analyzed with an animal model that included herd-test-day, age at calving and days in milk (DIM) as fixed effects, and random additive genetic and permanent environmental effects. A repeatability model and 5 random regression (RR) models with increasing order of Legendre polynomials were used. The goodness of fit for the different models was evaluated based on several tests. Our results indicate that the best model was a RR model with a fourth-order Legendre polynomial for both additive genetic and permanent environmental effects. Heritability estimates obtained with this model were from 0.26 to 0.36. Due to the relatively high heritability obtained for EC of milk, EC might be a potential indicator trait to use in a breeding program designed to reduce the incidence of mastitis.  相似文献   

5.
The CXCR1 gene plays an important role in the innate immunity of the bovine mammary gland. Associations between single nucleotide polymorphisms (SNP) CXCR1c.735C>G and c.980A>G and udder health have been identified before in small populations. A fluorescent multiprobe PCR assay was designed specifically and validated to genotype both SNP simultaneously in a reliable and cost-effective manner. In total, 3,106 cows from 50 commercial Flemish dairy herds were genotyped using this assay. Associations between genotype and detailed phenotypic data, including pathogen-specific incidence rate of clinical mastitis (IRCM), test-day somatic cell count, and test-day milk yield (MY) were analyzed. Staphylococcus aureus IRCM tended to associate with SNP c.735C>G. Cows with genotype c.735GG had lower Staph. aureus IRCM compared with cows with genotype c.735CC (rate ratio = 0.35, 95% confidence interval = 0.14–0.90). Additionally, a parity-specific association between Staph. aureus IRCM and SNP c.980A>G was detected. Heifers with genotype c.980GG had a lower Staph. aureus IRCM compared with heifers with genotype c.980AG (rate ratio = 0.15, 95% confidence interval = 0.04–0.56). Differences were less pronounced in multiparous cows. Associations between CXCR1 genotype and somatic cell count were not detected. However, MY was associated with SNP c.735C>G. Cows with genotype c.735GG out-produced cows with genotype c.735CC by 0.8 kg of milk/d. Results provide a basis for further research on the relation between CXCR1 polymorphism and pathogen-specific mastitis resistance and MY.  相似文献   

6.
The objectives were to infer heritability and genetic correlations between clinical mastitis (CM), milk fever (MF), ketosis (KET), and retained placenta (RP) within and between the first 3 lactations and to estimate genetic change over time for these traits. Records of 372,227 daughters of 2411 Norwegian Red (NRF) sires were analyzed with a 12-variate (4 diseases × 3 lactations) threshold model. Within each lactation, absence or presence of each of the 4 diseases was scored based on the cow's health recordings. Each disease was assumed to be a different trait in each of the 3 lactations. The model for liability had trait-specific effects of year-season of calving and age of calving (first lactation) or month-year of calving and calving interval (second and third lactations), herd-5-yr, sire of the cow, and a residual. Posterior means of heritability of liability in first, second, and third lactations were 0.08, 0.07, and 0.07, respectively, for CM; 0.09, 0.11, and 0.13 for MF; 0.14, 0.16, and 0.15 for KET, and 0.08 in all 3 lactations for RP. Posterior means of genetic correlations between liability to CM, MF, KET, and RP, within disease between lactations, ranged from 0.19 to 0.86, and were highest between KET in different lactations. Correlations involving first lactation MF were low and had higher standard deviations. Genetic correlations between diseases were low or moderate (from −0.10 to 0.40), within as well as between lactations; the largest estimates were for MF and KET, and the lowest involved MF or KET and RP. Positive genetic correlations between diseases suggest that some general disease resistance factor with a genetic component exists. Trends of average sire posterior means by birth-year of daughters were used to assess genetic change, and the results indicated genetic improvement of resistance to CM and KET and no genetic change for MF and RP in the NRF population.  相似文献   

7.
Trends in genetic correlations between longevity, milk yield, and somatic cell score (SCS) during lactation in cows are difficult to trace. In this study, changes in the genetic correlations between milk yield, SCS, and cumulative pseudo-survival rate (PSR) during lactation were examined, and the effect of milk yield and SCS information on the reliability of estimated breeding value (EBV) of PSR were determined. Test day milk yield, SCS, and PSR records were obtained for Holstein cows in Japan from 2004 to 2013. A random subset of the data was used for the analysis (825 herds, 205,383 cows). This data set was randomly divided into 5 subsets (162–168 herds, 83,389–95,854 cows), and genetic parameters were estimated in each subset independently. Data were analyzed using multiple-trait random regression animal models including either the residual effect for the whole lactation period (H0), the residual effects for 5 lactation stages (H5), or both of these residual effects (HD). Milk yield heritability increased until 310 to 351 d in milk (DIM) and SCS heritability increased until 330 to 344 DIM. Heritability estimates for PSR increased with DIM from 0.00 to 0.05. The genetic correlation between milk yield and SCS increased negatively to under ?0.60 at 455 DIM. The genetic correlation between milk yield and PSR increased until 342 to 355 DIM (0.53–0.57). The genetic correlation between the SCS and PSR was ?0.82 to ?0.83 at around 180 DIM, and decreased to ?0.65 to ?0.71 at 455 DIM. The reliability of EBV of PSR for sires with 30 or more recorded daughters was 0.17 to 0.45 when the effects of correlated traits were ignored. The maximum reliability of EBV was observed at 257 (H0) or 322 (HD) DIM. When the correlations of PSR with milk yield and SCS were considered, the reliabilities of PSR estimates increased to 0.31–0.76. The genetic parameter estimates of H5 were the same as those for HD. The rank correlation coefficients of the EBV of PSR between H0 and H5 or HD were greater than 0.9. Additionally, the reliabilities of EBV of PSR of H0 were similar to those for H5 and HD. Therefore, the genetic parameter estimates in H0 were not substantially different from those in H5 and HD. When milk yield and SCS, which were genetically correlated with PSR, were used, the reliability of PSR increased. Estimates of the genetic correlations between PSR and milk yield and between PSR and SCS are useful for management and breeding decisions to extend the herd life of cows.  相似文献   

8.
Genetic parameters have been estimated in the Black-Face ecotype of the Latxa breed for udder type traits (udder depth and attachment and teat placement and size) at first or later lactations (considered as different traits), as well as for udder type traits, milk yield, and lactational somatic cell score, including all lactations. Genetic correlations between udder type traits at first or later lactations ranged from 0.85 and 0.95 suggesting that they are nearly identical traits. Udder type traits had moderate heritabilities. Milk yield was estimated to have a genetic correlation of 0.43 with udder depth, 0.10 with udder attachment, −0.25 with teat placement, and −0.10 with teat size, which were unfavorable in general. Genetic correlations of lactational somatic cell score were 0.10 with udder depth, −0.27 with udder attachment, −0.01 with teat placement, and 0.29 with teat size. Genetic correlations between lactational somatic cell score and udder type traits show that udders with good shape are less prone to subclinical mastitis.  相似文献   

9.
Several selection criteria for reducing incidence of mastitis were developed from a random regression sire model for test-day somatic cell score (SCS). For comparison, sire transmitting abilities were also predicted based on a cross-sectional model for lactation mean SCS. Only first-crop daughters were used in genetic evaluation of SCS, and the different selection criteria were compared based on their correlation with incidence of clinical mastitis in second-crop daughters (measured as mean daughter deviations). Selection criteria were predicted based on both complete and reduced first-crop daughter groups (261 or 65 daughters per sire, respectively). For complete daughter groups, predicted transmitting abilities at around 30 d in milk showed the best predictive ability for incidence of clinical mastitis, closely followed by average predicted transmitting abilities over the entire lactation. Both of these criteria were derived from the random regression model. These selection criteria improved accuracy of selection by approximately 2% relative to a cross-sectional model. However, for reduced daughter groups, the cross-sectional model yielded increased predictive ability compared with the selection criteria based on the random regression model. This result may be explained by the cross-sectional model being more robust, i.e., less sensitive to precision of (co)variance components estimates and effects of data structure.  相似文献   

10.
Electrical conductivity (EC) of milk is an indicator of mastitis. If EC shows genetic variation and is genetically correlated to mastitis, it could be used in a breeding program that includes selection for improved mastitis resistance. In this study, daily records of EC and mastitis from about 1,500 Holstein cows were analyzed. A bivariate animal model was used for estimation of (co)variance components, including fixed effects of age of calving, herd-test-day, and days in milk, in addition to random additive genetic effects and permanent environmental effects. For EC, the estimated heritability was moderate (0.22 to 0.39), whereas for mastitis, the heritability was low (0.013). The genetic correlation between EC and mastitis was estimated to be 0.75, and genetic improvement of mastitis resistance should be feasible through selection for reduced EC.  相似文献   

11.
To determine the relationship of test-day (TD) somatic cell score (SCS) to TD and lactation milk yields, 1,320,590 records from Holstein first and second calvings from 1995 through 2002 were examined. All lactations had recorded yield and SCS for at least the first 4 TD. Least square analyses were conducted for yields on TD 2 through 10 within herd and cow. The model included regressions on current TD SCS and mean SCS of all previous TD with separate estimates by parity; effects for parity and calving year were included as well as regression on days in milk on TD 1. Corresponding analyses were conducted without regression on current SCS. An analysis of lactation yield was performed with a similar model and regression on all TD SCS. The SCS was highest most often on TD 1 for parity 1 (22.5%) and on TD 10 for parity 2 (18.5%). Regression of TD milk yield on mean of previous TD SCS was highest during the latter half of lactation (maximum of -0.346 kg/SCS unit on TD 9) for parity 1 and during TD through 7 (maximum of -0.366 kg/SCS unit on TD 4) for parity 2. Regression of TD yield on current TD SCS tended to be larger for later lactation. Regression of lactation yield on TD SCS was negative and important for TD 1 through 6 for parity 1 and for all TD for parity 2. To minimize milk loss, mastitis control is most important immediately pre- and postcalving for parity 1 and throughout lactation for parity 2.  相似文献   

12.
The objective of this study was to estimate the impact of somatic cell count in early lactation (SCCel) from Belgian dairy heifers on test-day somatic cell count (SCC) in first lactation. Geometric mean SCCel [5 to 14 d in milk (DIM)] of the 14,766 available samples was 104,000 cells/mL, and decreased from 178,000 at 5 DIM to 74,000 cells/mL at 14 DIM. Proportion of SCCel >200,000 cells/mL was 27.5. Heifers calving in the period April-June had highest SCCel.In total, 117,496 monthly SCC were measured. A multilevel regression analysis revealed that an increase of the natural log-transformed SCCel (LnSCCel) by one unit on average resulted in an increase of test-day natural log-transformed SCC (LnSCC) by 0.22 unit. The impact of LnSCCel on LnSCC depended on when LnSCCel was measured; an elevated LnSCCel at 14 DIM was more consequential than an equally elevated LnSCCel at 5 DIM. The probability of having a test-day SCC >200,000 cells/mL during the first lactation, also increased with an increasing LnSCCel. The negative effect of an elevated LnSCCel was still present, although to a lesser extent, in heifers with a second test-day SCC 相似文献   

13.
Genetic parameters of milk, fat, and protein yields were estimated in the first 3 lactations for registered Tunisian Holsteins. Data included 140,187; 97,404; and 62,221 test-day production records collected on 22,538; 15,257; and 9,722 first-, second-, and third-parity cows, respectively. Records were of cows calving from 1992 to 2004 in 96 herds. (Co)variance components were estimated by Bayesian methods and a 3-trait-3-lactation random regression model. Gibbs sampling was used to obtain posterior distributions. The model included herd × test date, age × season of calving × stage of lactation [classes of 25 days in milk (DIM)], production sector × stage of lactation (classes of 5 DIM) as fixed effects, and random regression coefficients for additive genetic, permanent environmental, and herd-year of calving effects, which were defined as modified constant, linear, and quadratic Legendre coefficients. Heritability estimates for 305-d milk, fat and protein yields were moderate (0.12 to 0.18) and in the same range of parameters estimated in management systems with low to medium production levels. Heritabilities of test-day milk and protein yields for selected DIM were higher in the middle than at the beginning or the end of lactation. Inversely, heritabilities of fat yield were high at the peripheries of lactation. Genetic correlations among 305-d yield traits ranged from 0.50 to 0.86. The largest genetic correlation was observed between the first and second lactation, potentially due to the limited expression of genetic potential of superior cows in later lactations. Results suggested a lack of adaptation under the local management and climatic conditions. Results should be useful to implement a BLUP evaluation for the Tunisian cow population; however, results also indicated that further research focused on data quality might be needed.  相似文献   

14.
Test-day (TD) models are used in most countries to perform national genetic evaluations for dairy cattle. The TD models estimate lactation curves and their changes as well as variation in populations. Although potentially useful, little attention has been given to the application of TD models for management purposes. The potential of the TD model for management use depends on its ability to describe within- or between-herd variation that can be linked to specific management practices. The aim of this study was to estimate variance components for milk yield, milk component yields, and somatic cell score (SCS) of dairy cows in the Ragusa and Vicenza areas of Italy, such that the most relevant sources of variation can be identified for the development of management parameters. The available data set contained 1,080,637 TD records of 42,817 cows in 471 herds. Variance components were estimated with a multilactation, random-regression, TD animal model by using the software adopted by NRS for the Dutch national genetic evaluation. The model comprised 5 fixed effects [region × parity × days in milk (DIM), parity × year of calving × season of calving × DIM, parity × age at calving × year of calving, parity × calving interval × stage of pregnancy, and year of test × calendar week of test] and random herd × test date, regressions for herd lactation curve (HCUR), the animal additive genetic effect, and the permanent environmental effect by using fourth-order Legendre polynomials. The HCUR variances for milk and protein yields were highest around the time of peak yield (DIM 50 to 150), whereas for fat yield the HCUR variance was relatively constant throughout first lactation and decreased following the peak around 40 to 90 DIM for lactations 2 and 3. For SCS, the HCUR variances were relatively small compared with the genetic, permanent environmental, and residual variances. For all the traits except SCS, the variance explained by random herd × test date was much smaller than the HCUR variance, which indicates that the development of management parameters should focus on between-herd parameters during peak lactation for milk and milk components. For SCS, the within-herd variance was greater than the between-herd variance, suggesting that the focus should be on management parameters explaining variances at the cow level. The present study showed clear evidence for the benefits of using a random regression TD model for management decisions.  相似文献   

15.
Genetic parameters for milk, fat, and protein yield and persistency in the first 3 lactations of Polish Black and White cattle were estimated. A multiple-lactation model was applied with random herd-test-day effect, fixed regressions for herd-year and age-season of calving, and random regressions for the additive genetic and permanent environmental effects. Three data sets with slightly different edits on minimal number of days in milk and the size of herd-year class were used. Each subset included more than 0.5 million test-day records and more than 58,000 cows. Estimates of covariance components and genetic parameters for each trait were obtained by Bayesian methods using the Gibbs sampler. Due to the large size and a good structure of the data, no differences in estimates were found when additional criteria for record selection were applied. More than 95% of the genetic variance for all traits and lactations was explained by the first 2 principal components, which were associated with the mean yield and lactation persistency. Heritabilities of 305-d milk yield in the first 3 lactations (0.18, 0.16, 0.17) were lower than those for fat (0.12, 0.11, 0.12) and protein (0.13, 0.14, 0.15). Estimates of daily heritabilities increased in general with days in milk for all traits and lactations, with no apparent abnormalities at the beginning or end of lactation. Genetic correlations between yields in different lactations ranged from 0.74 (fat yield in lactations 1 and 3) to 0.89 (milk yield in lactations 2 and 3). Persistency of lactation was defined as the linear regression coefficient of the lactation curve. Heritability of persistency increased with lactation number for all traits and genetic correlations between persistency in different lactations were smaller than those for 305d yield. Persistency was not genetically correlated with the total yield in lactation.  相似文献   

16.
The objective of this study was to investigate the genetic relationships of the 3 most frequently reported dairy cattle diseases (clinical mastitis, cystic ovaries, and lameness) with test-day milk yield and somatic cell score (SCS) in first-lactation Canadian Holstein cows using random regression models. Health data recorded by producers were available from the National Dairy Cattle Health System in Canada. Disease traits were defined as binary traits (0 = healthy, 1 = affected) based on whether or not the cow had at least one disease case recorded within 305 d after calving. Mean frequencies of clinical mastitis, cystic ovaries, and lameness were 12.7, 8.2, and 9.1%, respectively. For genetic analyses, a Bayesian approach using Gibbs sampling was applied. Bivariate linear sire random regression model analyses were carried out between each of the 3 disease traits and test-day milk yield or SCS. Random regressions on second-degree Legendre polynomials were used to model the daily sire additive genetic and cow effects on test-day milk yield and SCS, whereas only the intercept term was fitted for disease traits. Estimated heritabilities were 0.03, 0.03, and 0.02 for clinical mastitis, cystic ovaries, and lameness, respectively. Average heritabilities for milk yield were between 0.41 and 0.49. Average heritabilities for SCS ranged from 0.10 to 0.12. The average genetic correlations between daily milk yield and clinical mastitis, cystic ovaries, and lameness were 0.40, 0.26, and 0.23, respectively; however, the last estimate was not statistically different from zero. Cows with a high genetic merit for milk yield during the lactation were more susceptible to clinical mastitis and cystic ovaries. Estimates of genetic correlations between daily milk yield and clinical mastitis were moderate throughout the lactation. The genetic correlations between daily milk yield and cystic ovaries were near zero at the beginning of lactation and were highest at mid and end lactation. The average genetic correlation between daily SCS and clinical mastitis was 0.59 and was consistent throughout the lactation. The average genetic correlation between daily SCS and cystic ovaries was near zero (−0.01), whereas a moderate, but nonsignificant, correlation of 0.27 was observed between SCS and lameness. Unfavorable genetic associations between milk yield and diseases imply that production and health traits should be considered simultaneously in genetic selection.  相似文献   

17.
Mean daughter deviations for clinical mastitis among second-crop daughters were regressed on predicted transmitting abilities for clinical mastitis and lactation mean somatic cell score in first-crop daughters to validate the predictive ability of these traits as selection criteria for reduced incidence of clinical mastitis. A total of 321 sires had 684,897 second-crop daughters, while predicted transmitting abilities were calculated for 2159 sires, based on 495,681 records of first-crop daughters. Predictive ability, as a measure of efficiency of selection, was 23 to 43% higher for clinical mastitis than for lactation mean somatic cell score. Compared to single-trait selection, predictive ability improved 8 to 13% from utilizing information on both traits. The relative weight that should be assigned to standardized predicted transmitting abilities from univariate genetic analyses were 60 to 67% for clinical mastitis and 33 to 40% for lactation mean somatic cell score. No significant nonlinear genetic relationship between the two traits was found.  相似文献   

18.
This paper studies whether cows with originally lower somatic cell count (SCC) are more susceptible to clinical mastitis (CM) than cows with higher somatic cell count, and evaluates the correlations between CM, SCC, and milk yield. Data were extracted from the Finnish national milk-recording database and from the health recording system. First and second lactation records of 87,861 Ayrshire cows calving between January 1998 and December 2000 were included. Traits studied were incidence of CM, test-day SCC, and test-day milk yield before and following CM. Genetic parameters were estimated using multitrait REML with a sire model. Results did not indicate that cows with genetically low SCC would be more susceptible to CM. The genetic correlation between CM in the first and second lactation was reasonably high (0.73), suggesting that susceptibility to mastitis remains similar across lactations. The genetic correlation between CM and milk yield traits was positive (from 0.38 to 0.56), confirming the genetic antagonism between production and udder health traits. The genetic correlation between SCC and milk was positive in the first lactation, but negative, or near zero in the second lactation. This indicates that breeding for lower SCC might not affect milk production in later lactations. The results of this study support the use of SCC as an indicator of mastitis and a tool for selection for mastitis resistance.  相似文献   

19.
The aim of the present study was to assess genetic variation and heritability of a novel indicator of udder health, milk differential somatic cell count (DSCC), which represents the percentage of neutrophils plus lymphocytes in the total somatic cell count (SCC). Furthermore, we estimated genetic and phenotypic correlations of DSCC with other milk traits routinely measured in Italian Holstein cows. Besides DSCC, test-day data included milk yield, composition traits (i.e., fat, protein, casein, and lactose percentages), pH, milk urea nitrogen, and SCC. After editing, the final data set included 10,709 test-day records of 5,142 cows in 299 herds. Mean of DSCC was 62.07%, which means that macrophages were approximately 38% of total SCC. Comparing our results with the literature offered compelling evidence of the importance of acquiring information about the proportion of the different cell types in milk to better define the udder health status. In addition, our analysis revealed, for the first time, that DSCC is a heritable trait, and heritability (0.08 ± 0.02) was higher than that of traditional somatic cell score (0.04 ± 0.02). Nevertheless, heritability of DSCC is still low compared with milk yield and quality traits. Single-trait analysis within parity showed that DSCC was less heritable in primiparous than in multiparous cows, whereas bivariate analysis confirmed that DSCC and somatic cell score were 2 different traits, as their genetic and phenotypic correlations differed from unity. From a genetic point of view, the DSCC was positively weakly associated with milk yield, lactose percentage, and milk urea nitrogen, and negatively associated with pH. Our findings contributed to the understanding of the genetic background of DSCC and are a precursor to the potential use of DSCC in breeding programs to enhance cow resistance to mastitis. However, further research is needed to determine the weight this novel trait should receive in a selection program aimed to reduce udder health problems.  相似文献   

20.
Reduced potential milk yield is an important component of mastitis costs in dairy cows. The first aim of this study was to assess associations between somatic cell count (SCC) during the first lactation, and cumulative milk yield over the first lactation and subsequent lifetime of cows in Irish dairy herds. The second aim was to assess the association between SCC at 5 to 30 d in milk during parity 1 (SCC1), and SCC over the entire first lactation for cows in Irish dairy herds. The data set studied included records from 51,483 cows in 5,900 herds. Somatic cell count throughout the first lactation was summarized using the geometric mean and variance of SCC. Data were analyzed using linear models that included random effects to account for the lack of independence between observations, and herd-level variation in coefficients. Models were developed in a Bayesian framework and parameters were estimated from 10,000 Markov chain Monte Carlo simulations. The final models were a good fit to the data. A 1-unit increase in mean natural logarithm SCC over the first lactation was associated with a median decrease in first lactation and lifetime milk yield of 135 and 1,663 kg, respectively. A 1-unit increase in the variance of natural logarithm SCC over the first lactation was associated with a median decrease in lifetime milk yield of 719 kg. To demonstrate the context of lifetime milk yield results, microsimulation was used to model the trajectory of individual cows and evaluate the expected outcomes for particular changes in herd-level geometric mean SCC over the first lactation. A 75% certainty of savings of at least €199/heifer in the herd was detected if herd-level geometric mean SCC over the first lactation was reduced from ≥120,000 to ≤72,000 cells/mL. The association between SCC1 and SCC over the remainder of the first lactation was highly herd dependent, indicating that control measures for heifer mastitis should be preferentially targeted on an individual-herd basis toward either the pre- and peripartum period, or the lactating period, to optimize the lifetime milk yield of dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号