首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A genome scan for chromosomal regions influencing body conformation traits was conducted for a population of Spanish Churra dairy sheep following a daughter design. A total of 739 ewes from 11 half-sib sire families were included in the study. The ewes were scored for the 5 linear traits used in the breeding scheme of the Churra breed to assess body conformation: stature, rear legs-rear view, foot angle, rump width, and general appearance. All the animals, including the 11 sires, were genotyped for 181 microsatellite markers evenly distributed across the 26 sheep autosomes. Using the yield deviations of the raw scores adjusted for fixed factors as phenotypic measurements, a quantitative trait loci (QTL) analysis was performed on the basis of a multi-marker regression method. Seven suggestive QTL were identified on chromosomes Ovis aries (OAR)2, OAR5, OAR16, OAR23, and OAR26, but none reached a genome-wise significance level. Putative QTL were identified for all of the traits analyzed, except for general appearance score. The suggestive QTL showing the highest test statistic influenced rear legs-rear view and was localized on OAR16, close to the growth hormone receptor coding gene, GHR. Some of the putative linkage associations reported here are consistent with previously reported QTL in cattle for similar traits. To the best of our knowledge, this study provides the first report of QTL for body conformation traits in dairy sheep; further studies will be needed to confirm and redefine the linkage associations reported herein. It is expected that future genome-wide association analyses of larger families will help identify genes underlying these putative genetic effects and provide useful markers for marker-assisted selection of such functional traits.  相似文献   

2.
The purpose of this study was to map quantitative trait loci (QTL) affecting health traits in Swedish dairy cattle. A genome scan covering 17 chromosomes was performed. Ten grandsire families were used in a granddaughter design. Nine of the families belonged to the Swedish Red and White breed, which is related to other Nordic Ayrshire breeds, and one family was of the Swedish Holstein breed. A total of 417 bulls were genotyped for 116 microsatellite markers distributed over 17 chromosomes. Daughter yield deviations for clinical mastitis, somatic cell count (SCC), and other diseases (OD) were included in the analysis. Least squares interval mapping using putative QTL as cofactors was applied both within and across grandsire families. Significance thresholds were set by permutation tests. In the across-family analysis, we detected 8 suggestive QTL and 3 QTL significant at the genome level. The QTL affecting clinical mastitis were found on 3 chromosomes (9, 11, and 25), 4 QTL for SCC were found (on chromosomes 5, 9, 11, and 23), and we detected 4 QTL for OD (on chromosomes 9, 11, 15, and 25). In addition, we found several QTL that segregated within single families but where the QTL effect was not significant in the across-family analysis. In conclusion, we were able to locate QTL for all 3 analyzed traits, and overlapping QTL for several traits were observed.  相似文献   

3.
An extension of our previous genome scan of a North American Holstein-Friesian population was conducted to identify quantitative trait loci (QTL) affecting conformation traits. Resource families consisted of 1404 sons of 10 elite sires. Genome coverage was estimated to be 2713.5 cM (90%) for 406 markers using a granddaughter design. Regression interval mapping was used to detect QTL affecting 22 conformation traits, including body, udder, feet and legs, and dairy conformation as well as calving ease. Analysis of the families jointly identified 41 chromosome-wise significant QTL influencing conformation traits and 3 significant QTL influencing calving ease on 20 chromosomes. The false discovery rate method was used to account for multiple testing and 3/4 of the suggestive and 5/6 of significant QTL should be real effects. Fourteen of the 44 QTL were significant at the genome-wise level. Comparison of these results with other published reports identifies common QTL affecting conformation traits. Regions on 10 chromosomes appear to affect multiple traits, including conformation, milk production, and somatic cell score, within these particular US Holstein families. Additional work is needed to determine the precise locations of the QTL and select positional candidate genes influencing these traits.  相似文献   

4.
Impaired fertility is the main reason for involuntary culling of dairy cows in Sweden. The objective of this study was to map quantitative trait loci (QTL) influencing fertility and calving traits in the Swedish dairy cattle population. The traits analyzed were number of inseminations, 56-d nonreturn rate, interval from calving to first insemination, fertility treatments, heat intensity score, stillbirth, and calving performance. A genome scan covering 20 bovine chromosomes was performed using 145 microsatellite markers. The mapping population consisted of 10 sires and their 417 sons in a granddaughter design. Nine of the sires were of the Swedish Red Breed, and one was a Swedish Holstein. Least squares regression was used to map loci affecting the analyzed traits, and permutation tests were used to set significance thresholds. Cofactors were used in the analyses of individual chromosomes to adjust for QTL found on other chromosomes. The use of cofactors increased both the number of QTL found and the significance level. In the initial analysis, we found 13 suggestive QTL that were mapped to chromosomes 6, 7, 9, 11, 13, 15, 20, and 29. When cofactors were included, 30 QTL were detected on chromosomes 1, 3, 4, 18, 19, 22, and 25, in addition to the 8 previously mentioned chromosomes. Some of the results from the cofactor analysis may be false positives and require further validation. In conclusion, we were able to map several QTL affecting fertility and calving traits in Swedish dairy cattle.  相似文献   

5.
In this study, 2 procedures were used to analyze a data set from a whole-genome scan, one based on linkage analysis information and the other combing linkage disequilibrium and linkage analysis (LDLA), to determine the quantitative trait loci (QTL) influencing milk production traits in sheep. A total of 1,696 animals from 16 half-sib families were genotyped using the OvineSNP50 BeadChip (Illumina Inc., San Diego, CA) and analysis was performed using a daughter design. Moreover, the same data set has been previously investigated through a genome-wide association (GWA) analysis and a comparison of results from the 3 methods has been possible. The linkage analysis and LDLA methodologies yielded different results, although some significantly associated regions were common to both procedures. The linkage analysis detected 3 overlapping genome-wise significant QTL on sheep chromosome (OAR) 2 influencing milk yield, protein yield, and fat yield, whereas 34 genome-wise significant QTL regions were detected using the LDLA approach. The most significant QTL for protein and fat percentages was detected on OAR3, which was reported in a previous GWA analysis. Both the linkage analysis and LDLA identified many other chromosome-wise significant associations across different sheep autosomes. Additional analyses were performed on OAR2 and OAR3 to determine the possible causality of the most significant polymorphisms identified for these genetic effects by the previously reported GWA analysis. For OAR3, the analyses demonstrated additional genetic proof of the causality previously suggested by our group for a single nucleotide polymorphism located in the α-lactalbumin gene (LALBA). In summary, although the results shown here suggest that in commercial dairy populations, the LDLA method exhibits a higher efficiency to map QTL than the simple linkage analysis or linkage disequilibrium methods, we believe that comparing the 3 analysis methods is the best approach to obtain a global picture of all identifiable QTL segregating in the population at both family-based and population-based levels.  相似文献   

6.
Genome scans for detection of bovine quantitative trait loci (QTL) were performed via variance component linkage analysis and linkage disequilibrium single-locus regression (LDRM). Four hundred eighty-four Holstein sires, of which 427 were from 10 grandsire families, were genotyped for 9,919 single nucleotide polymorphisms (SNP) using the Affymetrix MegAllele GeneChip Bovine Mapping 10K SNP array. A hybrid of the granddaughter and selective genotyping designs was applied. Four thousand eight hundred fifty-six of the 9,919 SNP were located to chromosomes in base-pairs and formed the basis for the analyses. The mean polymorphism information content of the SNP was 0.25. The SNP centimorgan position was interpolated from their base-pair position using a microsatellite framework map. Estimated breeding values were used as observations, and the following traits were analyzed: 305-d lactation milk, fat, and protein yield; somatic cell score; herd life; interval of calving to first service; and age at first service. The variance component linkage analysis detected 102 potential QTL, whereas LDRM analysis found 144 significant SNP associations after accounting for a 5% false discovery rate. Twenty potential QTL and 49 significant SNP associations were in close proximity to QTL cited in the literature. Both methods found significant regions on Bos taurus autosome (BTA) 3, 5, and 16 for milk yield; BTA 14 and 19 for fat yield; BTA 1, 3, 16, and 28 for protein yield; BTA 2 and 13 for calving to first service; and BTA 14 for age at first service. Both approaches were effective in detecting potential QTL with a dense SNP map. The LDRM was well suited for a first genome scan due to its approximately 8 times lower computational demands. Further fine mapping should be applied on the chromosomal regions of interest found in this study.  相似文献   

7.
A whole genome scan of Finnish Ayrshire was conducted to map quantitative trait loci (QTL) affecting milk production. The analysis included 12 half-sib families containing a total of 494 bulls in a granddaughter design. The families were genotyped with 150 markers to construct a 2764 cM (Haldane) male linkage map. In this study interval mapping with multiple-marker regression approach was extended to analyse multiple chromosomes simultaneously. The method uses identified QTL on other chromosomes as cofactors to increase mapping power. The existence of multiple QTL on the same linkage group was also analyzed by fitting a two-QTL model to the analysis. Empirical values for chromosome-wise significance thresholds were determined using a permutation test. Two genome-wise significant QTL were identified when chromosomes were analyzed individually, one affecting fat percentage on chromosome (BTA) 14 and another affecting fat yield on BTA12. The cofactor analysis revealed in total 31 genome-wise significant QTL. The result of two-QTL analysis suggests the existence of two QTL for fat percentage on BTA3. In general, most of the identified QTL confirm results from previous studies of Holstein-Friesian cattle. A new QTL for all yield components was identified on BTA12 in Finnish Ayrshire.  相似文献   

8.
Eleven half-sib ovine families, including 1,421 Spanish Churra ewes, were analyzed for 181 microsatellite markers spanning the entire autosomic ovine genome. Using a multimarker regression method, a daughter experimental design was used to identify putative quantitative trait loci (QTL) affecting the somatic cell score (SCS). Chromosome-wise significance thresholds were set empirically by permuting the phenotypic data. Marker order and genetic distances of the autosomic linkage map built for this commercial population were in accordance with the published ovine linkage map. An across-family association analysis revealed a region on chromosome 20 suggestive of evidence for a QTL. Segregation of the QTL into 2 families was inferred from the within-family analysis, and differences in the position of the suggested QTL were found between the 2 half-sib groups. This could be the result of incomplete information associated with the markers for the significant families. The location of the major histocompatibility complex in proximity to the across-family effect suggests this region may harbor a segregating QTL for the SCS in the Churra population. Studies in dairy cattle examining the SCS have reported linkage associations on corresponding bovine orthologous regions, supporting the validity of our findings.  相似文献   

9.
Preliminary marker association results for quantitative trait loci affecting conformation traits using the granddaughter design and 8 large US Holstein grandsire families revealed strong associations in two families between the predicted transmitting abilities for dairy conformation and marker genotypes on bovine chromosome 27. Those results were based on single marker-trait associations in a genome-scan to identify broad chromosomal regions potentially containing genes affecting traits of interest. Results presented here describe continued study of quantitative trait loci on chromosome 27 for eventual incorporation into a marker-assisted selection program. Tests of marker associations for family 8 (91 sons) indicated an association with a microsatellite marker located near the telomere of chromosome 27. Interval analysis performed using additional marker genotypes generated for family 8 yielded further evidence for a quantitative trait locus in this region. No evidence was found for associations with milk production traits in this family in this region. An association was also detected in family 2 (240 sons) with a microsatellite marker located approximately 21 cM from the centromere of chromosome 27. Interval analysis performed for family 2 yielded evidence for a quantitative trait locus for dairy conformation near BMS689 with evidence of associations with fat percentage in the same region. Identification of quantitative trait loci affecting dairy conformation and fat components supports results reported by other groups, providing additional evidence that genes affecting fat metabolism are located on bovine chromosome 27.  相似文献   

10.
Genetic improvement of livestock populations can be achieved through detection and mapping of genetic markers linked to quantitative trait loci (QTL). With the completion of the bovine genome sequence assembly, single nucleotide polymorphism (SNP) assays spanning the whole bovine genome and research work on large-scale identification, validation, and analysis of genotypic variation in cattle has become possible. A total of 462 Canadian Holstein Bulls were used to test the association between SNP and QTL. Single locus linkage disequilibrium regression model was implemented to perform a whole genome scan to identify and map QTL affecting conformation and functional traits. One thousand five hundred thirty-six SNP markers from introns and exons of potential QTL regions for economically important traits across the bovine genome were selected for association analysis. A total of 45 and 151 SNP were found to be associated with 17 conformation and functional traits at a genome- and chromosome-wise significance level, respectively. Among the 196 significant SNP, 169 of them are newly detected in this study, whereas 27 of them have been reported in previous literature and 161 of these were located in genes and are worth further investigating to potentially identify the causative mutations underlying the QTL. The single locus linkage disequilibrium regression method using SNP marker genotypes has proven to be a successful methodology for detecting and mapping QTL in dairy cattle populations.  相似文献   

11.
Mastitis is an important and common dairy cattle disease affecting milk yield, quality, and consumer safety as well as cheese yields and quality. Animal welfare and residues of the antibiotics used to treat mastitis cause public concern. Considerable genetic variation may allow selection for increased resistance to mastitis. Because of high genetic correlation to milk somatic cell score (SCS), SCS can serve as a surrogate trait for mastitis resistance. The present study intended to identify quantitative trait loci (QTL) affecting SCS in Israeli and Italian Holstein dairy cattle (IsH and ItH, respectively), using selective DNA pooling with single and multiple marker mapping. Milk samples of 4,788 daughters of 6 IsH and 7 ItH sires were used to construct sire-family high- and low-tail pools, which were genotyped at 123 (IsH) and 133 (ItH) microsatellite markers. Shadow correction was used to obtain pool allele frequency estimates. Frequency difference between the tails and empirical standard error of D, SE(D), were used to obtain P-values. All markers significant by single marker mapping were also significant by multiple marker mapping, but not vice versa. Combining both populations, 22 QTL on 21 chromosomes were identified; all corresponded to previous reports in the literature. Confidence intervals were set by chi-squared drop method. Heterozygosity of QTL was estimated at 44.2%. Allele substitution effects ranged from 1,782 to 4,930 cells/mL in estimated breeding value somatic cell count units. Most (80%) of the observed variation in estimated breeding value somatic cell score could be explained by the QTL identified under the stringent criteria. The results found here can be used as a basis for further genome-wide association studies for the same trait.  相似文献   

12.
A whole-genome scan to detect quantitative trait loci (QTL) for functional traits was performed in the German Holstein cattle population. For this purpose, 263 genetic markers across all autosomes and the pseudoautosomal region of the sex chromosomes were genotyped in 16 granddaughter-design families with 872 sons. The traits investigated were deregressed breedingvalues for maternal and direct effects on dystocia (DYSm, DYSd) and stillbirth (STIm, STId) as well as maternal and paternal effects on nonreturn rates of 90 d (NR90m, NR90p). Furthermore, deregressed breeding values for functional herd life (FHL) and daughter yield deviation for somatic cell count (SCC) were investigated. Weighted multimarker regression analyses across families and permutation tests were applied for the detection of QTL and the calculation of statistical significance. A ten percent genomewise significant QTL was localized for DYSm on chromosome 8 and for SCC on chromosome 18. A further 24 putative QTL exceeding the 5% chromosomewise threshold were detected. On chromosomes 7, 8, 10, 18, and X/Yps, coincidence of QTL for several traits was observed. Our results suggest that loci with influence on udder health may also contribute to genetic variance of longevity. Prior to implementation of these QTL in marker assisted selection programs for functional traits, information about direct and correlated effects of these QTL as well as fine mapping of their chromosomal positions is required.  相似文献   

13.
Chromosomal regions affecting multiple traits (multiple trait quantitative trait regions or MQR) in dairy cattle were detected using a method based on results from single trait analyses to detect quantitative trait loci (QTL). The covariance between contrasts for different traits in single trait regression analysis was computed. A chromosomal region was considered an MQR when the observed covariance between contrasts deviated from the expected covariance under the null hypothesis of no pleiotropy or close linkage. The expected covariance and the confidence interval for the expected covariance were determined by permutation of the data. Four categories of traits were analyzed: production (5 traits), udder conformation (6 traits), udder health (2 traits), and fertility (2 traits). The analysis of a granddaughter design involving 833 sons of 20 grandsires resulted in 59 MQR (alpha = 0.01, chromosomewise). Fifteen MQR were found on Bos taurus autosome (BTA) 14. Four or more MQR were found on BTA 6, 13, 19, 22, 23, and 25. Eight MQR involving udder conformation and udder health and 4 MQR involving production traits and udder health were found. Five MQR were identified for combinations of fertility and udder conformation traits, and another 5 MQR were identified for combinations of fertility and production traits. For 22 MQR, the difference between the correlation attributable to the MQR and the overall genetic correlation was >0.60. Although the false discovery rate was relatively high (0.52), it was considered important to present these results to assess potential consequences of using these MQR for marker-assisted selection.  相似文献   

14.
Genetic parameters have been estimated in the Black-Face ecotype of the Latxa breed for udder type traits (udder depth and attachment and teat placement and size) at first or later lactations (considered as different traits), as well as for udder type traits, milk yield, and lactational somatic cell score, including all lactations. Genetic correlations between udder type traits at first or later lactations ranged from 0.85 and 0.95 suggesting that they are nearly identical traits. Udder type traits had moderate heritabilities. Milk yield was estimated to have a genetic correlation of 0.43 with udder depth, 0.10 with udder attachment, −0.25 with teat placement, and −0.10 with teat size, which were unfavorable in general. Genetic correlations of lactational somatic cell score were 0.10 with udder depth, −0.27 with udder attachment, −0.01 with teat placement, and 0.29 with teat size. Genetic correlations between lactational somatic cell score and udder type traits show that udders with good shape are less prone to subclinical mastitis.  相似文献   

15.
Lameness is an important factor for culling animals. Strong legs and feet improve herd life of dairy cows. Therefore, many countries include leg and feet conformation traits in their breeding programs, often as early predictors of longevity. However, few countries directly measure lameness related traits to include these in a breeding program. Lameness indices in 3 different lactations and 5 leg conformation traits (rear legs side view, rear legs rear view, hock quality, bone quality, and foot angle) were measured on granddaughters of 19 Danish Holstein grandsires with 33 to 105 sons. A genome scan was performed to detect quantitative trait loci (QTL) based on the 29 autosomes using microsatellite markers. Data were analyzed across and within families for QTL affecting lameness and leg conformation traits. A regression method and a variance component method were used for QTL detection. Two QTL each for lameness in the first [Bos taurus autosome (BTA); BTA5, BTA26] and second (BTA19, BTA22) lactations were detected. For the 5 different leg conformation traits, 7 chromosome-wise significant QTL were detected across families for rear legs side view, 5 for rear legs rear view, 4 for hock quality, 4 for bone quality, and 1 for foot angle. For those chromosomes where a QTL associated with 2 different traits was detected (BTA1, BTA11, BTA15, BTA26, and BTA27), a multitrait-1-QTL model and a multitrait-2-QTL model were performed to characterize these QTL as single QTL with pleiotropic effects or distinct QTL.  相似文献   

16.
A marker-assisted selection program (MAS) has been implemented in dairy cattle in France. The efficiency of such a selection program depends on the use of correct genetic parameters for the marked quantitative trait loci (QTL). Therefore, the objective of this study was to estimate the proportion of genetic variance explained by 4 QTL described in previous studies (these QTL are segregating on chromosomes 6, 14, 20, and 26). Genotypes for 11 markers were available for 3,974 bulls grouped within 54 sire families of the French Holstein population undergoing MAS. The parameters were estimated for 4 QTL and 5 dairy traits: milk, fat and protein yields, and fat and protein percentages. The proportion of genetic variance explained by the QTL ranged from as low as 0.03 to 0.36%. Both lack of marker informativity and poor monitoring of QTL transmission might limit the accuracy of estimation. The QTL explained a larger proportion of genetic variance for milk composition traits. The QTL on chromosome 14 and chromosomes 6 and 20 have their largest influence on fat and protein percentages, respectively. The overall proportions of genetic variance explained by the QTL were 27.0, 30.7, 24.1, 48.2, and 33.6% for milk, fat and protein yields, and fat and protein percentages, respectively. These results clearly indicated that a large part of the genetic variance is explained by a small number of QTL and that their use in MAS might be beneficial for dairy cattle breeding programs.  相似文献   

17.
Standard animal model programs can be modified to include the effect of a quantitative gene, even if only a fraction of the population is genotyped. Five methods to estimate the effect of a diallelic quantitative gene affecting a quantitative trait were compared to a standard animal model (model I) on simulated populations, based on mean squared errors and bias. In models II, III, and IV complete linkage between a single genetic marker and the quantitative trait gene was assumed. In models II and III the elements of the incidence matrix for the gene effect were 0 or 1 for genotyped individuals, and the probabilities of the possible candidate gene genotypes for individuals that were not genotyped. In model III segregation analysis was used to compute these probabilities. If only some of the cows were genotyped, the model III estimates were nearly unbiased, while model II underestimated the simulated effects. When only sires were genotyped, model II overestimated the simulated effect. In models V and VI two markers bracketing the quantitative gene with recombination frequencies of 0.1 and 0.2 with the quantitative gene were simulated, and the algorithm of Whittaker et al. (1996) was used to derive estimates of gene effect and location. In model V marker allele effects were included in the animal model analysis. In model VI, the model I genetic evaluations were analyzed. Model V estimates for both effect and location of the quantitative gene were unbiased, while model VI estimates were only 0.25 of the simulated effect.  相似文献   

18.
A longitudinal-linkage analysis approach was developed and applied to an outbred population. Nonlinear mixed-effects models were used to describe the lactation patterns and were extended to include marker information following single-marker and interval mapping models. Quantitative trait loci (QTL) affecting the shape and scale of lactation curves for production and health traits in dairy cattle were mapped in three U.S. Holstein families (Dairy Bull DNA Repository families one, four, and five) using the granddaughter design. Information on 81 informative markers on six Bos taurus autosomes (BTA) was combined with milk yield, fat, and protein percentage and somatic cell score (SCS) test-day records. Six percent of the single-marker tests surpassed the experiment-wise significance threshold. Marker BL41 on BTA3 was associated with decrease in milk yield during mid-lactation in family one. The scale and shape of the protein percentage lactation curve in family four varied with BMC4203 (BTA6) allele that the son received from the grandsire. Some map locations were associated with variation in the lactation pattern of multiple traits. In family four, the marker HUJI177 (BTA3) was associated with changes in the milk yield and protein percentage curves suggesting a QTL with pleiotropic effects or multiple QTL in the region. The interval mapping model uncovered a QTL on BTA7 associated with variation in milk-yield pattern in family four and a QTL on BTA21 affecting SCS in family five. The developed approach can be extended to random regressions, covariance functions, spline, gametic and variance component models. The results from the longitudinal-QTL approach will help to understand the genetic factors acting at different stages of lactation and will assist in positional candidate gene research. Identified positions can be incorporated into marker-assisted selection decisions to alter the persistency and peak production or the fluctuation of SCS during a lactation.  相似文献   

19.
A total of 5,459 Israeli Holstein cows, daughters of 11 sires, were genotyped for 29 microsatellites spanning chromosome 7 and analyzed by the daughter design for 9 economic traits: milk, fat, and protein yield, fat and protein percentage, somatic cell score, female fertility, herd life, and milk persistency. Quantitative trait loci at chromosome-wise 0.05 significance were obtained for fat and protein yield, fat percentage, somatic cell score, and female fertility. Peak F-values were obtained at 29 cM for fat and protein yield and fat percentage, at 60 cM for somatic cell score, at 74 cM for herd life, and at 11 cM for female fertility. The 0.95 confidence intervals for quantitative trait loci locations were 20 cM for kilograms of fat, 27 cM for fertility, and 51 cM for somatic cell score. Two loci affecting fertility at opposite ends of the chromosome are apparently segregating in the population. A quantitative trait locus for fertility near the centromere was confirmed by application of the modified granddaughter design to a single family. Estimated frequency of the economically favorable allele in the Israeli Holstein cattle was less than 0.5. Significant genetic gain for fertility seems possible by marker-assisted selection.  相似文献   

20.
The goal of this study was to identify potential quantitative trait loci (QTL) for 27 production, fitness, and conformation traits of Guernsey cattle through genome-wide association (GWA) analyses, with extra emphasis on BTA19, where major QTL were observed for several traits. Animals' de-regressed predicted transmitting abilities (PTA) from the December 2018 traditional US evaluation were used as phenotypes. All of the Guernsey cattle included in the QTL analyses were predictor animals in the reference population, ranging from 1,077 to 1,685 animals for different traits. Single-trait GWA analyses were carried out by a mixed-model approach for all 27 traits using imputed high-density genotypes. A major QTL was detected on BTA19, influencing several milk production traits, conformation traits, and livability of Guernsey cattle, and the most significant SNP lie in the region of 26.2 to 28.3 Mb. The myosin heavy chain 10 (MYH10) gene residing within this region was found to be highly associated with milk production and body conformation traits of dairy cattle. After the initial GWA analyses, which suggested that many significant SNP are in linkage with one another, conditional analyses were used for fine mapping. The top significant SNP on BTA19 were fixed as covariables in the model, one at a time, until no more significant SNP were detected on BTA19. After this fine-mapping approach was applied, only 1 significant SNP was detected on BTA19 for most traits, but multiple, independent significant SNP were found for protein yield, dairy form, and stature. In addition, the haplotype that hosts the major QTL on BTA19 was traced to a US Guernsey born in 1954. The haplotype is common in the breed, indicating a long-term influence of this QTL on the US Guernsey population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号