首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 64 毫秒
1.
通过焊接热循环模拟试验,对试样进行微观组织结构观察和低温韧性测试,研究了不同条件的热循环过程对一种低合金高强度船体钢组织及性能的影响。结果表明:在一定的焊接线能量范围内,t8/5对试验钢的组织及性能影响不大,模拟粗晶区组织主要为马氏体和贝氏体;峰值温度对试验钢热影响区组织及低温韧性影响较大,粗晶区为热影响区薄弱环节,二次热循环可提高试验钢粗晶区的低温韧性;试验钢经历两次粗晶区热循环后仍保持有细小的板条结构及条间奥氏体,冲击韧性较为稳定。  相似文献   

2.
对一种飞机起落架用超高强度钢的低倍粗晶与高倍组织进行了对应研究。结果表明,低倍粗晶不仅是粗大奥氏体晶粒的宏观表现,还与一种特殊上贝氏体组织的存在有关。  相似文献   

3.
利用Gleeble-3500热力模拟试验机制备T23钢焊接接头中粗晶热影响区和不同二次热循环的再热粗晶热影响区,并进行STF(Strain-to-fracture)试验。结果表明,粗晶区经历1 350℃或780℃二次热循环后,仍保持粗晶热影响区的粗大晶粒、笔直的晶界形貌以及高再热裂纹敏感性,断面收缩率低于5%。粗晶区经历了880℃、950℃或1 100℃二次热循环后,晶粒尺寸变小,晶界变曲折,断面收缩率分别为24.67%、16.6%和7.24%,再热裂纹敏感性降低。因此,合理调控二次热循环的峰值温度在A_(c1)~A_(c3)之间可以有效降低再热裂纹敏感性。  相似文献   

4.
为研究焊接对800 MPa级Ti、Nb复合微合金化析出强化超细晶粒钢组织性能的影响.运用Gleeble3500热模拟试验机,对实验钢进行单道次焊接热循环试验,并研究冷却速度、冷却时间t8/5对焊接热影响区粗晶区(CGHAZ)组织、性能的影响.结果表明:冷却速度5~15℃/s,CGHAZ的组织为贝氏体,冷却速度进一步增大,会出现马氏体.随着冷却时间t8/5的增加,原奥氏体晶粒尺寸逐渐增加,硬度值逐渐降低,冲击韧性先上升后下降.t8/5为20~120 s时,CGHAZ显微硬度(223~250.4 HV)均小于母材的显微硬度(270.6 HV),出现软化现象,t8/5为20 s时,冲击吸收功最高,为18.2 J,但仅有母材的25.3%.经历焊接热循环后,奥氏体晶粒粗化以及CGHAZ出现贝氏体组织是导致脆化的主要原因.  相似文献   

5.
利用高温金相、热处理等手段测定了飞机起落架用超高强度钢300M的奥氏体相变结晶温度。试验结果表明,300M钢的奥氏体相变再结晶发在一温度区间,此温度区间的高低受加热方式,原始组织的影响,根据试验结果,确定了消除300M钢低倍粗晶的热处理工艺。  相似文献   

6.
细晶钢焊接热影响区晶粒长大及组织转变   总被引:10,自引:0,他引:10  
分析了细晶钢的晶粒长大现象及其影响因素,讨论了HAZ的组织转变及其影响因素,提出了防止上贝氏体Bu和M-A组元形成的有效控制措施。  相似文献   

7.
为了研究800MPa级低合金高强钢焊接粗晶区的组织转变规律,采用热模拟的方法,应用L78RITA相变热膨胀仪模拟了实验用钢的两次焊接热循环过程,对应的焊接线能量约为20kJ/cm。建立了该钢的奥氏体连续加热转变曲线(TTA),并对组织、硬度和热膨胀曲线进行分析,结果显示,实验用钢一次热循环粗晶区组织为板条马氏体和贝氏体,硬度为318HV,当第二次热循环峰值温度(Tp2)为1000℃时,第一次热循环后的组织发生完全重结晶,得到细小的贝氏体组织,硬度下降,当Tp2为900℃时发生部分重结晶,硬度最低(239HV),当Tp2为800℃时,在晶界和晶内相界生成链状分布的M-A组元,而Tp2小于A′c1时发生回火作用,M-A组元分解并析出碳化物。实验用钢的热影响区未出现组织遗传现象,因此为了更准确判断组织转变类型,应结合TTA曲线对焊接热影响区组织转变进行分析。  相似文献   

8.
采用Gleeble3500热-力学模拟试验机,研究了在不同焊接热循环条件下,X100级管线钢焊接粗晶区组织形态的变化规律.实验结果表明,X100级管线钢焊接粗晶区组织主要有粗大的粒状贝氏体、贝氏体铁素体和马氏体.当焊后冷却速度低于2℃/s时,焊接粗晶区组织为粒状贝氏体;当焊后冷却速度为2~5℃/s时,组织为贝氏体铁素体;当焊后冷却速度高于5℃/s时,粗晶区开始出现马氏体组织.  相似文献   

9.
石油储罐钢焊接热影响区模拟研究   总被引:1,自引:1,他引:0  
采用焊接热模拟技术,研究不同焊接热输入条件下焊接热循环对石油储罐钢焊接热影响区粗晶区(CGHAZ)的组织和性能的影响.结果表明:实验钢在80~100kJ/cm的大热输入下,热影响区仍能够保持良好的低温韧性;随着焊接热输入的增加,实验钢CGHAZ组织变粗大,低温冲击功下降;钢中弥散分布着大量细小TiN粒子,在焊接热循环中...  相似文献   

10.
综述了热输入、合金元素、冷却速率和应变速率对高强钢焊接接头显微组织的影响和高温共聚焦显微镜原位观察高强钢显微组织的最新研究进展,总结了高强钢焊接接头粗晶热影响区显微组织的转变机理.结果表明:通过延长冷却时间、减少热输入量、控制合金元素的含量和采用预处理提高应变速率等方法,可以调控高强钢焊接接头显微组织中马氏体、粒状贝氏...  相似文献   

11.
采用热模拟技术研究了液化天然气储罐用9Ni钢焊接热影响区的组织转变规律。实验结果表明,9Ni钢经历热循环后的显微组织类型包括贝氏体和马氏体两种。低冷却速度条件下,9Ni钢经历热循环后的主要转变产物为贝氏体(包括粒状贝氏体和上贝氏体两种类型);随着冷却速度的提高,组织类型由粒状贝氏体向上贝氏体转化。高冷却速度条件下,经历热循环后的转变产物为马氏体。  相似文献   

12.
X80管线钢焊接粗晶区韧化因素的研究   总被引:1,自引:0,他引:1  
采用热模拟技术研究了不同热循环对X80管线钢焊接粗晶区低温冲击韧度的影响.实验结果表明,随着冷却时间t8/5的增加,第二相粒子的数量减少且出现聚集现象,晶粒尺寸增加,但是当t8/5小于6.8s时,粒状贝氏体含量较高,板条束贝氏体细小且方向性较弱,试样的冲击韧性较高;而当t8/5超过6.8s后,粒状贝氏体含量逐渐下降,板条贝氏体逐渐粗大、平行,试样韧性又逐渐降低.M-A组元由于其含量低,尺寸小,对韧性的影响不显著.因此为提高焊接粗晶区的韧性,应采用小线能量和合适的预热温度来控制晶粒尺寸和组织形态.  相似文献   

13.
用焊接热模拟方法研究了V-N-Ti和Nb-V-Ti微合金化正火型海工钢模拟粗晶热影响区(CGHAZ)组织和韧性的变化规律。结果表明,组织的不同使V-N-Ti设计正火型海工钢的模拟CGHAZ韧性比Nb-V-Ti钢的好。对于V-N-Ti钢,较高的N含量提高了富Ti(Ti, V)(C, N)粒子析出温度和铁素体形核能力,使模拟CGHAZ原始奥氏体晶粒和(取向差角为15°)晶粒细化,并生成能阻止或使解理裂纹的偏转细小多边形铁素体,因此具有良好的低温韧性。而Nb-V-Ti钢模拟CGHAZ原奥氏体晶界上的链状M-A、粗大的原始奥氏体晶粒和有效晶粒尺寸,是模拟CGHAZ韧性差的原因。  相似文献   

14.
采用热膨胀仪测量了150μm和20μm大小两种晶粒尺寸的SDP1贝氏体钢的过冷奥氏体连续冷却转变(CCT)曲线,结合组织观察、硬度测试、热力学计算及动力学分析研究了晶粒尺寸对相变过程组织和硬度的影响。结果表明,小晶粒材料在低冷速相变过程中出现了片状珠光体,最低硬度为305HV,贝氏体转变对应冷速区间较小;大晶粒材料在各冷却条件下无珠光体产生,且贝氏体转变区较大,最低硬度为423HV。150μm和20μm晶粒材料的贝氏体相变激活能分别为124kJ·mol~(-1)和134kJ·mol~(-1)。  相似文献   

15.
赵国英  牛建平 《材料导报》2007,21(F11):259-262
论述了高强度低合金(HSLA)钢晶粒细化理论及强度提高途径,综述了高强度低合金(HSLA)钢晶粒细化技术及近年来的研究成果,探讨了超细晶技术的理论依据及存在问题。为高强度低合金钢组织超细化技术的理论研究和实际工程应用提供参考。  相似文献   

16.
通过对ZG32Cr06铸钢粗晶成因的分析及消除粗晶的工艺性能试验,探讨了粗晶导致铸件断裂的机理。试验证明,由于浇铸温度过高,水爆清砂时开箱过早而产生的粗晶可以用热处理方法消除,同时提出了铸件在浇铸时防止粗晶的措施。  相似文献   

17.
使用Gleeble 3800热模拟试验机模拟F460钢单道次焊接条件下焊接粗晶热影响区的热循环过程,通过光镜(OM)、扫描电镜(SEM)分析热影响区的显微组织、确定临界事件,通过ABAQUS软件计算临界解理断裂应力σf,进而系统分析不同焊接热输入E下韧脆转变温度变化的内在机理。结果表明:随着E的提高,焊接粗晶热影响区显微组织依次为少量板条马氏体和大量细密的板条贝氏体,板条贝氏体较多的板条/粒状贝氏体,粒状贝氏体较多的板条/粒状贝氏体,粗大的粒状贝氏体。原始奥氏体晶粒、贝氏体团的最大尺寸随着E的提高而变大。在完全解理断裂的冲击断口上,寻找停留在缺口尖端附近的残留裂纹,通过对比残留裂纹长度、原始奥氏体晶粒大小、贝氏体团尺寸,发现不同E下解理断裂的临界事件尺寸都是贝氏体团大小,而临界事件尺寸越小,韧脆转变温度越低。此外,通过有限元模拟缺口尖端的应力分布得到σf,σf越大冲击韧度越好,随着E的提高σf降低,故进一步说明随着E的提高韧脆转变温度Tk上升的内在机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号