首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dhoble RM  Lunge S  Bhole AG  Rayalu S 《Water research》2011,45(16):4769-4781
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate.  相似文献   

3.
Vaughan RL  Reed BE 《Water research》2005,39(6):1005-1014
The objective of this research was to model As(V) removal onto a iron oxide impregnated activated carbon (FeAC) using the surface complexation model (SCM) approach. As(V) removal by FeAC was due to the impregnated Fe oxide, not the base carbon material and was a strong function of pH. The two-monoprotic site-triple layer model adequately described As(V) removal using 2 fitting parameters compared with the 3 parameters needed for the diprotic site model. This, along with a better representation of the recognized As(V) removal mechanism (ligand exchange with -OH) as well as the acid-base behavior makes the two-monoprotic approach the better model for As(V) removal by the impregnated iron oxide although the diprotic model was able to describe the pH dependent removal of As(V). Both models were also able to predict As(V) removal at different adsorbent/adsorbate ratios using K(As) determined from a single FeAC adsorption experiment. Thus, fewer adsorption experiments are required in order to model As(V) removal in equilibrium and column systems. The results described in this work will be used as a foundation in developing a dynamic model to predict As(V) adsorption in a fixed-bed adsorber.  相似文献   

4.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

5.
Porous iron oxides are being evaluated and selected for arsenic removal in potable water systems. Granular ferric hydroxide, a typical porous iron adsorbent, is commercially available and frequently considered in evaluation of arsenic removal methods. GFH is a highly porous (micropore volume approximately 0.0394+/-0.0056 cm(3)g(-1), mesopore volume approximately 0.0995+/-0.0096 cm(3)g(-1)) adsorbent with a BET surface area of 235+/-8 m(2)g(-1). The purpose of this paper is to quantify arsenate adsorption kinetics on GFH and to determine if intraparticle diffusion is a rate-limiting step for arsenic removal in packed-bed treatment systems. Data from bottle-point isotherm and differential column batch reactor (DCBR) experiments were used to estimate Freundlich isotherm parameters (K and 1/n) as well as kinetic parameters describing mass transfer resistances due to film diffusion (k(f)) and intraparticle surface diffusion (D(s)). The pseudo-equilibrium (18 days of contact time) arsenate adsorption density at pH 7 was 8 microg As/mg dry GFH at a liquid phase arsenate concentration of 10 microg As/L. The homogeneous surface diffusion model (HSDM) was used to describe the DCBR data. A non-linear relationship (D(S)=3.0(-9) x R(p)(1.4)) was observed between D(s) and GFH particle radius (R(P)) with D(s) values ranging from 2.98 x 10(-12) cm(2)s(-1) for the smallest GFH mesh size (100 x 140) to 64 x 10(-11) cm(2)s(-1) for the largest GFH mesh size (10 x 30). The rate-limiting process of intraparticle surface diffusion for arsenate adsorption by porous iron oxides appears analogous to organic compound adsorption by activated carbon despite differences in adsorption mechanisms (inner-sphere complexes for As versus hydrophobic interactions for organic contaminants). The findings are discussed in the context of intraparticle surface diffusion affecting packed-bed treatment system design and application of rapid small-scale column tests (RSSCTs) to simulate the performance of pilot- or full-scale systems at the bench-scale.  相似文献   

6.
The sorption of the arsenite (AsO33−) and the arsenate (AsO43−) ions and their conjugate acids onto iron oxides is one of main processes controlling the distribution of arsenic in the environment. The present work intends to provide a large vibrational spectroscopic database for comparison of As(III) and As(V) speciation in aqueous solutions and at the iron oxide - solution interface. With this purpose, ferrihydrite, feroxyhyte, goethite and hematite were firstly synthesized, characterized in detail and used for adsorption experiments. Raman spectra were recorded from As(III) and As(V) aqueous solutions at various pH conditions selected in order to highlight arsenic speciation. Raman Scattering and Diffuse Reflectance Infrared Fourier Transform (DRIFT) studies were carried out to examine the respective As-bonding mechanisms. The collected data were curve-fitted and discussed according to molecular symmetry concepts. X-ray Absorption Near Edge Spectroscopy (XANES) was applied to confirm the oxidation state of the sorbed species. The comprehensive spectroscopic investigation contributes to a better understanding of arsenic complexation by iron oxides.  相似文献   

7.
Fine iron oxide particles (IOPs) are effective in removing natural organic matter (NOM) that causes membrane fouling in water treatment, but the separation of used IOPs is problematic. This study focused on the fabrication and use of granular iron oxide adsorbents, in combination with ultrafiltration (UF) membranes while investigating the NOM removal efficiency and fouling control. Sulfonated styrene-divinylbenzene copolymer beads were coated with two types of iron oxides (ferrihydrite and magnetite) and their performances were compared to that of fine IOPs. A significant amount of iron oxide coating (52–63 mg of Fe per g bead) was achieved by means of electrostatic binding and hydrolysis of iron ions. Iron oxide coated polymer (IOCP) beads were able to remove some amounts (~20%) of dissolved organic carbon (DOC) comparable to that achieved by IOPs within a short period of time (<15 min). Regenerated IOCPs exhibited the same sorption capacity as the fresh ones. The integrated IOCP/UF system operation with a 15-min empty bed contact time and 10-h cyclic regeneration maintained the 20% DOC removal with no sign of significant membrane fouling. In contrast, a sharp transmembrane pressure buildup occurred in the UF system when no iron oxide pretreatment was applied, regardless of the types of membranes tested. Iron oxide adsorbed the NOM fraction with molecular weights of >1000 kDa which is believed to be responsible for severe UF fouling.  相似文献   

8.
采用商品活性炭和金属氧化物改性炭作为吸附剂,研究了几种活性炭对磺胺甲噁唑(SMZ)的吸附及解吸特性。结果表明:SMZ在几种活性炭上的吸附动力学符合拟二级动力学方程;SMZ的吸附均可采用Freundlich、Langmuir和Langmuir-Freundlich模型进行拟合,Langmuir-Freundlich吸附模型能更好地描述活性炭和改性炭对SMZ的吸附行为;铁、锰氧化物的存在对活性炭的比表面或者孔结构影响不大,并且其对活性炭吸附水中SMZ的性能影响甚微;与AC-Fe和AC-Mn相比,AC-0上吸附的SMZ更易解吸,改性炭负载的金属氧化物与SMZ的表面络合作用增强了AC-Fe和AC-Mn对SMZ的化学吸附,并且改性炭的MnOx和FeOx能氧化降解部分SMZ。  相似文献   

9.
Arsenic removal by iron-modified activated carbon   总被引:6,自引:0,他引:6  
Iron-impregnated activated carbons have been found to be very effective in arsenic removal. Oxyanionic arsenic species such as arsenate and arsenite adsorb at the iron oxyhydroxide surface by forming complexes with the surface sites. Our goal has been to load as much iron within the carbon pores as possible while also rendering as much of the iron to be available for sorbing arsenic. Surface oxidation of carbon by HNO3/H2SO4 or by HNO3/KMnO4 increased the amount of iron that could be loaded to 7.6-8.0%; arsenic stayed below 10 ppb until 12,000 bed volumes during rapid small-scale tests (RSSCTs) using Rutland, MA groundwater (40-60 ppb arsenic, and pH of 7.6-8.0). Boehm titrations showed that surface oxidation greatly increased the concentration of carboxylic and phenolic surface groups. Iron impregnation by precipitation or iron salt evaporation was also evaluated. Iron content was increased to 9-17% with internal iron-loading, and to 33.6% with both internal and external iron loading. These iron-tailored carbons reached 25,000-34,000 bed volumes to 10 ppb arsenic breakthrough during RSSCTs. With the 33.6% iron loading, some iron peeled off.  相似文献   

10.
Zeng L 《Water research》2003,37(18):4351-4358
A method for preparing iron(III)-based binary oxide adsorbents in a granulated form for arsenic removal was studied. The key step in the method was the simultaneous generation of hydrous ferric oxide (FeOOH) sol and silica sol in situ in one reactor. This eventually led to the formation of Fe-Si complexes. The addition of silica enhanced the granulated adsorbent strength but reduced the arsenic adsorption capacity. An optimum Si/Fe molar ratio in the balance of adsorbent strength and arsenic adsorption capacity was found to be approximately 0.33. The effects of aging time, drying temperature and process pH on adsorbents were also evaluated in the study. X-ray diffraction analysis confirmed that the iron(III) oxide in the Fe-Si binary oxide adsorbents was amorphous, largely due to the retardation of the iron oxide crystallization by the presence of silicate species. The surface area of the Fe-Si adsorbents and the particle size of Fe-Si complexed suspensions were determined as well. The batch strength testing procedure introduced in this study can provide a simple and quick evaluation of granulate strength in a wet status. Generally, this developed method can prepare granulated Fe-Si binary oxide adsorbents for column adsorption of arsenic from water.  相似文献   

11.
Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity.  相似文献   

12.
An B  Liang Q  Zhao D 《Water research》2011,45(5):1961-1972
Ion exchange (IX) is considered by US EPA as one of the best available technologies for removing arsenic from drinking water. However, typical IX processes will generate large volumes of arsenic-laden regenerant brine that requires costly further handling and disposal. This study aimed to develop an engineered strategy to minimize the production and arsenic leachability of the process waste residual. We prepared and tested a new class of starch-bridged magnetite nanoparticles for removal of arsenate from spent IX brine. A low-cost, “green” starch at 0.049% (w/w) was used as a stabilizer to prevent the nanoparticles from agglomerating and as a bridging agent allowing the nanoparticles to flocculate and precipitate while maintaining their high arsenic sorption capacity. When applied to a simulated spent IX brine containing 300 mg/L As and 6% (w/w) NaCl, nearly 100% removal of arsenic was achieved within 1 h using the starch-bridged nanoparticles at an Fe-to-As molar ratio of 7.6, compared to only 20% removal when bare magnetite particles were used. Increasing NaCl in the brine from 0 to 10% (w/w) had little effect on the arsenic sorption capacity. Maximum uptake was observed within a pH range of 4-6. The Langmuir capacity coefficient was determined to be 248 mg/g at pH 5.0. The final treatment sludge was able to pass the TCLP (Toxicity Characteristic Leaching Procedure) based leachability of 5 mg/L as As.  相似文献   

13.
Magnetite nanoparticles were used to treat arsenic‐contaminated water. Because of their large surface area, these particles have an affinity for heavy metals by adsorbing them from a liquid phase. The results of the study showed that the maximum arsenic adsorption occurred at pH 2, with a value of approximately 3.70 mg/g for both As(III) and As(V) when the initial concentration of both arsenic species was maintained at 2 mg/L. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on the contact time, the initial concentration of arsenic, the phosphate concentration in the water and the adsorbent concentration. The results suggest that arsenic adsorption involved the formation of weak arsenic–iron oxide complexes at the magnetite surface. At a fixed adsorbent (magnetite nanoparticles) concentration of 0.4 g/L, percent arsenic removal decreased with increasing phosphate concentration. Magnetite nanoparticles removed <50% of arsenic from water containing >6 mg/L phosphate. In this case, an optimum design for achieving high arsenic removal by magnetite nanoparticles may be required.  相似文献   

14.
Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m2/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ∼255,000 BVs and ∼271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice.  相似文献   

15.
The efficiency of biofiltering the o-chlorophenol solution through the KAU-grade activated carbon is common and modified with iron oxide—was studied. Both sorbents showed high selective adsorption ability for the compound investigated. The activated carbon modified with iron oxides was found to have a positive effect on the adsorption of o-chlorophenol at low equilibrium concentrations and continuous filtration.  相似文献   

16.
The phenomena of lead, copper and cobalt adsorption by activated carbon from aqueous solution was studied in detail. Laboratory studies were conducted to evaluate and optimize the various process variables (i.e. carbon type, solution pH, equilibrium time and carbon dose). A quantitative determination of the adsorptive capacity of activated carbon to remove these metals was also determined.Significant differences were found in the ability of different types of activated carbons to adsorb lead, copper and cobalt from aqueous solution. Solution pH was found to be the most important parameter affecting the adsorption. It was found that there was practically no adsorption of lead, copper and cobalt by activated carbon below a well defined solution pH value for each metal. This critical solution pH value was found to be lower than the pH value associated with the formation of hydrolysis products. Of the ten commercially available activated carbons evaluated in these experiments, Barney Cheney NL 1266 was found to adsorb the largest percentage of lead, copper and cobalt. The adsorption of any single metal (lead, copper and cobalt) was hindered by the presence of the other metals; the metals apparently competed for adsorption sites.  相似文献   

17.
The results of preliminary screening tests comparing the total Hg(II) removal capacity of 11 different brands of commercial activated carbon indicated that a very high percent (99–100%) total Hg removal was attained by all types of activated carbon especially at pH 4–5; the percent total Hg(II) removal decreased with pH's 4–5 except activated carbons Nuchar SA and SN which maintained a relatively high percent (>90%) total Hg(II) removal capacity at all pH values. Experiments were then conducted to reveal the mechanisms of Hg(II) removal by Nuchar SA (a powdered carbon). The results show that total Hg(II) removal was brought by two mechanisms: the adsorption and reduction. In order to investigate the kinetics of these two reactions, volatilization by bubbling N2 gas at high flow rate was used to remove the Hg(g) product of the reduction reaction. It was noted that both the adsorption and the reduction/volatilization reactions were highly pH-dependent; at pH approx. <3–4 or > approx. 9–10 the extent of reduction/volatilization reaction superceded the adsorption reaction; whereas in the mid-pH region adsorption reaction dominated the total Hg(II) removal. The rate of adsorption reaction is very fast, reaching equilibrium in a few minutes; the rate of reduction/volatilization follows a linear √t expression. The reduction reaction is more significant with Filtrasorb 400 (H-type carbon) than Nuchar SA (L-type carbon). In the presence of strong chelating agent, ethylenediaminetetraacetate (EDTA), the total Hg(II) removal decreases due partly to the formation of less adsorbably mercuric(II)-EDTA complexes.  相似文献   

18.
A coconut shell activated carbon precursor was modified by impregnation with phosphoric acid. The effects of the particle diameter of the impregnated activated carbons (IACs) on the thickness, pressure resistance, and face velocity of a chemical filter were investigated. Furthermore, volatile organic compounds (VOCs) adsorption experiments were carried out to determine the relationship between the removal efficiency and the chemical properties of the adsorbents. The effects of various parameters such as challenge gas concentration, saturated adsorption ratio, impregnation method and impregnant contents were investigated. The results showed that the effect of face velocity on pressure resistance is larger than that of the thickness, that 0.25 M phosphoric acid impregnation of activated carbon can raise VOC removal efficiency by 2–3% (toluene: from 95.8% to 98.1%, isopropanol: from 95.2 to 97.2%), and that the optimal impregnation time is around 1.5 h. A simple shaking impregnation method exhibited better performance than the ultrasonic method.  相似文献   

19.
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h−1) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号