首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为高效模拟地震激励下坝库耦合瞬态响应,建立了无限水库的连分式与有限元法的耦合公式。结合坝体有限元公式,利用坝库耦合项,发展了坝库耦合瞬态分析迭代算法。利用该算法分析了水平向地震激励下重力坝的瞬态响应。比较了基于连分式法、动态刚度矩阵法、动态质量矩阵法模拟坝库耦合问题的计算效率。数值算例表明该耦合算法模拟坝库耦合瞬态响应的正确性及高效性。该方法继承了比例边界有限元法的精度高、离散单元少等特点,又避免了其卷积积分,提升其计算效率,为坝库耦合瞬态响应提供了一种高效分析方法。  相似文献   

2.
为高效模拟地震激励下坝库耦合瞬态响应,建立了无限水库的连分式与有限元法的耦合公式。结合坝体有限元公式,利用坝库耦合项,发展了坝库耦合瞬态分析迭代算法。利用该算法分析了水平向地震激励下重力坝的瞬态响应。比较了基于连分式法、动态刚度矩阵法、动态质量矩阵法模拟坝库耦合问题的计算效率。数值算例表明该耦合算法模拟坝库耦合瞬态响应的正确性及高效性。该方法继承了比例边界有限元法的精度高、离散单元少等特点,又避免了其卷积积分,提升其计算效率,为坝库耦合瞬态响应提供了一种高效分析方法。  相似文献   

3.
李上明 《工程力学》2013,30(11):42-46
针对冲击波作用下水下结构与无限声学水域的流固耦合问题,建立了基于比例边界有限元法和有限元法的瞬态分析方法。无限水域用比例边界有限元法离散,而水下结构等有限域用有限元法模拟。该方法利用声学近似法将无限水域施加给水下结构的载荷分解成冲击波载荷和散射波载荷。冲击波载荷由水下冲击波理论确定,而散射波载荷由比例边界有限元法估值。为改善比例边界有限元法动态质量矩阵的计算效率,发展了动态质量矩阵的时域递推公式。数值算例分析结果表明了所发展的瞬态分析方法和时域递推公式的正确性。  相似文献   

4.
李上明 《工程力学》2014,31(8):41-45
基于比例边界有限元法连分式理论,提出了等横截面无限声学水域的连分式公式,推导了高频连分式公式与双渐近连分式公式,比较了连分式公式与动态质量矩阵模拟等截面无限水域的计算效率,发现前者效率优于后者。利用该公式分析了等截面无限声学水域在顺河向激励下的瞬态响应。数值模拟结果表明高频连分式公式的稳定性与收敛性有待改进,而双渐近连分式则具有更好的稳定性和收敛性,能正确模拟等截面无限水域。  相似文献   

5.
基于Fourier积分变换和虚功原理,形成了频域-波数域比例边界有限元法,分析了移动荷载作用下半空间域弹性空间动力响应。首先对半无限域弹性体的动力控制方程进行时间到频域,荷载移动方向的空间域到波数的Fourier积分变换,然后选择比例中心,利用虚功原理,在地铁隧道孔洞横截面环向上采用有限元法意义离散,建立了频域-波数域比例边界有限元方程,进而形成了一阶微分矩阵方程形式的半无限空间动力刚度。文中理论推导表明:利用文中方法分析半无限域中沿地铁隧道结构纵轴向的移动荷载动力响应问题,不仅可避免无穷边界计算处理误差,而且可极大减小计算分析量。计算结果表明:半无限弹性地基的振动响应随移动荷载速度增大而增大,尤其是当荷载速度增大到土体剪切波速后,振动波传播到土体表面引起土体振动显著增大,土体振动性增大,将会对土体及表面结构的安全性形成一定影响,另一方面土体的振动在沿地铁隧道纵轴向的衰减比竖向慢。  相似文献   

6.
比例边界有限元法作为一种高精度的半解析数值求解方法,特别适合于求解无限域与应力奇异性等问题,多边形比例边界单元在模拟裂纹扩展过程、处理局部网格重剖分等方面相较于有限单元法具有明显优势。目前,比例边界有限元法更多关注的是线弹性问题的求解,而非线性比例边界单元的研究则处于起步阶段。该文将高效的隔离非线性有限元法用于比例边界单元的非线性分析,提出了一种高效的隔离非线性比例边界有限元法。该方法认为每个边界线单元覆盖的区域为相互独立的扇形子单元,其形函数以及应变-位移矩阵可通过半解析的弹性解获得;每个扇形区的非线性应变场通过设置非线性应变插值点来表达,引入非线性本构关系即可实现多边形比例边界单元高效非线性分析。多边形比例边界单元的刚度通过集成每个扇形子单元的刚度获取,扇形子单元的刚度可采用高斯积分方案进行求解,其精度保持不变。由于引入了较多的非线性应变插值点,舒尔补矩阵维数较大,该文采用Woodbury近似法对隔离非线性比例边界单元的控制方程进行求解。该方法对大规模非线性问题的计算具有较高的计算效率,数值算例验证了算法的正确性以及高效性,将该方法进行推广,对实际工程分析具有重要意义。  相似文献   

7.
将人工边界设置在半无穷层单元和内部有限元区域的交界面上,建立了半无穷层单元的刚度矩阵后,得到了边界节点的动力平衡方程。任意给定激励圆频率,将边界节点系统的动力平衡方程转化为特征值方程。求解特征值方程得出边界节点系统的特征值和特征模态,利用模态叠加原理得到体现左半无穷层单元和右半无穷层单元对内部有限元区域作用的边界矩阵,这就是该文的一致边界。将其与内部有限元区域的刚度矩阵进行组装来模拟无穷远域介质对波的传播作用。最后用数值算例来说明一致边界的精确性和可行性。  相似文献   

8.
陈灯红  杜成斌 《工程力学》2014,31(6):30-34,41
采用连分式算法可以有效地求解无限域动力刚度表示的比例边界有限元方程, 它具有收敛范围广、收敛速度快等优点. 该文在高频渐近连分式算法的基础上考虑了低频渐近, 发展了一种针对矢量波动方程的双渐近算法. 随着展开阶数的增加, 双渐近算法可以在全频域范围内快速逼近准确解. 引入了系数矩阵?X(i)来增强连分式算法的数值稳定性. 通过在高频极限、低频极限时满足动力刚度表示的比例边界有限元方程, 建立了递推关系以求得动力刚度矩阵. 通过二维半无限楔形体、三维均质弹性半空间数值算例表明, 双渐近算法比单渐近算法更稳定、优越.  相似文献   

9.
本文用半解析有限元法对边界积分方程作离散化处理,通过引入基本解函数和半解析半离散试函数的二次半解析过程,使三维弹性动力学问题简化为一维数值计算。文中又采用移动边界元法来模拟波在半无限介质中传播的表面积分问题,分析计算了各种瞬态波在介质内传播,绕射及地面运动问题。计算结果表明,半解析边界元法不仅计算精度高,而且工作量大大降低,具有较高的经济效益与应用价值。  相似文献   

10.
提出一种基于分段时域自适应算法和等几何分析的求解粘弹性问题的数值方法。利用时域分段展开,建立了递推格式的比例边界元求解方程,环向比例边界采用等几何技术离散,在继承常规比例边界有限元半解析、便于处理应力奇异性/无限域问题等优点的同时,可更准确地描述几何边界,由此进一步提高了计算精度;在时域,通过分段时域自适应计算,保证不同时间步长下的计算精度。通过数值算例,从计算精度、收敛性等方面,对所提方法的有效性进行了验证。  相似文献   

11.
To improve the ability of the scaled boundary finite element method (SBFEM) in the dynamic analysis of dam–reservoir interaction problems in the time domain, a diagonalization procedure was proposed, in which the SBFEM was used to model the reservoir with uniform cross‐section. First, SBFEM formulations in the full matrix form in the frequency and time domains were outlined to describe the semi‐infinite reservoir. No sediments and the reservoir bottom absorption were considered. Second, a generalized eigenproblem consisting of coefficient matrices of the SBFEM was constructed and analyzed to obtain corresponding eigenvalues and eigenvectors. Finally, using these eigenvalues and eigenvectors to normalize the SBFEM formulations yielded diagonal SBFEM formulations. A diagonal dynamic stiffness matrix and a diagonal dynamic mass matrix were derived. An efficient method was presented to evaluate them. In this method, no Riccati equation and Lyapunov equations needed solving and no Schur decomposition was required, which resulted in great computational costs saving. The correctness and efficiency of the diagonalization procedure were verified by numerical examples in the frequency and time domains, but the diagonalization procedure is only applicable for the SBFEM formulation whose scaling center is located at infinity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The study of dynamic soil-structure interaction is significant to civil engineering applications, such as machine foundation vibration, traffic-induced vibration, and seismic dynamic response. The scaled boundary finite element method (SBFEM) is a semi-analytical algorithm, which is used to solve the dynamic response of a three-dimensional infinite soil. It can automatically satisfy the radiation boundary condition at infinity. Based on the dynamic stiffness matrix equation obtained by the modified SBFEM, a continued fraction algorithm is proposed to solve the dynamic stiffness matrix of layered soil in the frequency-domain. Then, the SBFEM was coupled with the finite element method (FEM) at the interface to solve the dynamic stiffness matrices of the rigid surface/buried foundation. Finally, the mixed-variable algorithm was used to solve the three-dimensional transient dynamic response of the foundation in the time domain. Numerical examples were performed to verify the accuracy of the proposed algorithm in solving the dynamic stiffness matrix of the infinite domain in the frequency domain and the dynamic transient displacement response of the foundation in the time domain. Compared with the previous numerical integration technique, the dynamic stiffness matrix in the frequency domain calculated by using the proposed algorithm has higher accuracy and higher efficiency.  相似文献   

13.
This paper is devoted to the analysis of elastodynamic problems in 3D‐layered systems which are unbounded in the horizontal direction. For this purpose, a finite element model of the near field is coupled to a scaled boundary finite element model (SBFEM) of the far field. The SBFEM is originally based on describing the geometry of a half‐space or full‐space domain by scaling the geometry of the near field / far field interface using a radial coordinate. A modified form of the SBFEM for waves in a 2D layer is also available. None of these existing formulations can be used to describe a 3D‐layered medium. In this paper, a modified SBFEM for the analysis of 3D‐layered continua is derived. Based on the use of a scaling line instead of a scaling centre, a suitable scaled boundary transformation is proposed. The derivation of the corresponding scaled boundary finite element (SBFE) equations in displacement and stiffness is presented in detail. The latter is a nonlinear differential equation with respect to the radial coordinate, which has to be solved numerically for each excitation frequency considered in the analysis. Various numerical examples demonstrate the accuracy of the new method and its correct implementation. These include rigid circular and square foundations embedded in or resting on the surface of layered homogeneous or inhomogeneous 3D soil deposits over rigid bedrock. Hysteretic damping is assumed in some cases. The dynamic stiffness coefficients calculated using the proposed method are compared with analytical solutions or existing highly accurate numerical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This study presents the development of the scaled boundary finite element method (SBFEM) to simulate elastoplastic stress wave propagation problems subjected to transient dynamic loadings. Material nonlinearity is considered by first reformulating the SBFEM to obtain an explicit form of shape functions for polygons with an arbitrary number of sides. The material constitutive matrix and the residual stress fields are then determined as analytical polynomial functions in the scaled boundary coordinates through a local least squares fit to evaluate the elastoplastic stiffness matrix and the residual load vector semianalytically. The treatment of the inertial force within the solution of the nonlinear system of equations is also presented within the SBFEM framework. The nonlinear equation system is solved using the unconditionally stable Newmark time integration algorithm. The proposed formulation is validated using several benchmark numerical examples.  相似文献   

15.
许贺  邹德高  孔宪京 《工程力学》2019,36(12):37-43
在坝-库水动力流固耦合分析中,比例边界有限元方法(SBFEM)仅需对流固交界面进行离散,就可以模拟半无限域库水,节省了节点自由度个数,具有较高效率。但采用数值方法处理动水压力时得到的附加质量阵为满阵,进行大规模的面板坝弹塑性动力分析时用于求解方程的时间较多。该文根据动水压力附加质量阵的物理意义与分布特点,提出了一种基于FEM-SBFEM的坝与库水的动力耦合简化计算方法,仅需提供一个保留系数β(0 ≤ β ≤ 1.0)即可实现不同程度的动水压力附加质量阵化简,简单易行;将其应用在面板坝与库水的动力弹塑性耦合计算中,建议了β的取值范围,在保证具有良好精度的前提下大幅提高了计算效率。  相似文献   

16.
This work introduces a semi‐analytical formulation for the simulation and modeling of curved structures based on the scaled boundary finite element method (SBFEM). This approach adapts the fundamental idea of the SBFEM concept to scale a boundary to describe a geometry. Until now, scaling in SBFEM has exclusively been performed along a straight coordinate that enlarges, shrinks, or shifts a given boundary. In this novel approach, scaling is based on a polar or cylindrical coordinate system such that a boundary is shifted along a curved scaling direction. The derived formulations are used to compute the static and dynamic stiffness matrices of homogeneous curved structures. The resulting elements can be coupled to general SBFEM or FEM domains. For elastodynamic problems, computations are performed in the frequency domain. Results of this work are validated using the global matrix method and standard finite element analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a coupled model based on finite element method (FEM), boundary element method (BEM) and scaled boundary FEM (SBFEM) (also referred to as the consistent infinitesimal finite element cell method) for dynamic response of 2D structures resting on layered soil media is presented. The SBFEM proposed by Wolf and Song (Finite‐element Modelling of Unbounded Media. Wiley: England, 1996) and BEM are used for modelling the dynamic response of the unbounded media (far‐field). The standard FEM is used for modelling the finite region (near‐field) and the structure. In SBFEM, which is a semi‐analytical technique, the radiation condition at infinity is satisfied exactly without requiring the fundamental solution. This method, also eliminates the need for the discretization of interfaces between different layers. In both SBFEM and BEM, the spatial dimension is decreased by one. The objective of the development of this coupled model is to combine advantages of above‐mentioned three numerical models to solve various soil–structure interaction (SSI) problems efficiently and effectively. These three methods are coupled (FE–BE–SBFEM) via substructuring method, and a computer programme is developed for the harmonic analyses of SSI systems. The coupled model is established in such a way that, depending upon the problem and far‐field properties, one can choose BEM and/or SBFEM in modelling related far‐field region(s). Thus, BEM and/or SBFEM can be used efficiently in modelling the far‐field. The proposed model is applied to investigate dynamic response of rigid and elastic structures resting on layered soil media. To assess the proposed SSI model, several problems existing in the literature are chosen and analysed. The results of the proposed model agree with the results presented in the literature for the chosen problems. The advantages of the model are demonstrated through these comparisons. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号