首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
对铝含量为2%、4%(质量分数,下同)的310S耐热钢板材采用手工氩弧焊(TIG)的焊接方法进行焊接,利用光学显微镜对焊缝的显微组织进行分析,利用电子探针(EMPA)分析焊接母材的元素分布,并对焊接接头进行室温和高温(800℃)力学性能测试。结果表明:不同铝含量的310S耐热钢板材焊接后的组织均良好,都没有宏观裂纹及夹杂等缺陷;铝元素的加入,抑制了焊接热影响区晶粒的异常长大,细化了晶粒;高铝310S的焊接板材与母材一样具有优良的室温力学性能和高温力学性能,加铝310S耐热钢具有良好的焊接性能。  相似文献   

2.
 对铝含量为2%、4%(质量分数,下同)的310S耐热钢板材采用手工氩弧焊(TIG)的焊接方法进行焊接,利用光学显微镜对焊缝的显微组织进行分析,利用电子探针(EMPA)分析焊接母材的元素分布,并对焊接接头进行室温和高温(800℃)力学性能测试。结果表明:不同铝含量的310S耐热钢板材焊接后的组织均良好,都没有宏观裂纹及夹杂等缺陷;铝元素的加入,抑制了焊接热影响区晶粒的异常长大,细化了晶粒;高铝310S的焊接板材与母材一样具有优良的室温力学性能和高温力学性能,加铝310S耐热钢具有良好的焊接性能。  相似文献   

3.
 采用钨极氩弧焊和手工电弧焊焊接316L/X65双金属复合管。利用光学显微镜、能谱仪、扫描电镜、力学性能测试及电化学测试等分析手段研究了复合管焊接接头的微观结构、化学成分、力学性能及电化学腐蚀性能。结果表明,过渡层焊缝的化学成分受到稀释较小,过渡层熔合线附近出现了元素迁移,不锈钢层焊缝与母材的化学成分基本一致;扩散层为类马氏体+残留奥氏体,过渡层和不锈钢层焊缝均为奥氏体+少量铁素体;在试验参数下,焊接接头各项力学性能优良、无缺陷;覆层焊缝与母材的电化学腐蚀性能相差极小。  相似文献   

4.
本文针对800MPa级TI6AL4合金,选取低于母材强度级别的2B焊丝,并采用TIG窄间隙焊接,同时对接头的力学性能和显微组织分别进行了测试和观察。结果表明:采用TIG窄间隙焊的焊接接头抗拉强度为900MPa,接头延伸率为8%,通过SEM试验发现,窄间隙接头母材的合金元素向焊缝中心扩散,合金元素强化了焊接接头。  相似文献   

5.
秦斌  王宝森 《钢铁钒钛》2008,29(2):23-26
对3 mm厚304奥氏体不锈钢板进行了熔化极气体保护焊接(MIG)试验.在焊接中发现,在适当范围内提高焊接速度有利于减小焊缝和热影响区宽度,增加接头强度的稳定性;但是焊接速度过快会导致焊缝区气孔的产生,从而降低接头强度的稳定性和耐蚀性.通过控制焊接速度可以保证304奥氏体不锈钢焊接接头具有良好的力学性能和良好的耐腐蚀性能.  相似文献   

6.
采用动电位极化曲线、电化学阻抗谱、Mott-Schottky曲线等电化学方法研究了以308 L为焊丝的304 L不锈钢焊接接头在不同氯离子含量的混凝土模拟孔隙液中腐蚀行为和电化学规律.随Cl-增加,304 L不锈钢焊接接头的三个区域(母材、焊缝和热影响区)在混凝土模拟孔隙液中的自腐蚀电位、点蚀电位及电荷转移电阻降低,钝化膜中载流子密度和焊接接头的点蚀坑数量增加.在同浓度的腐蚀溶液中,308 L的焊缝区域耐蚀性最佳,热影响区次之,304 L基体表现出低的电荷转移电阻和高的掺杂浓度使得母材的耐蚀性最差.   相似文献   

7.
采用手工MIG焊接方法,ER5087焊丝与ER5356焊丝分别对3mm5083铝合金板材进行焊接,对焊接接头的表面成形、显微组织及力学性能进行检测,研究结果表明:采用ER5087焊丝的力学性能优于ER5356焊丝;两种焊丝的焊接接头抗拉强度分别达到母材94%和84%.  相似文献   

8.
针对304L不锈钢在-196℃工况的焊接接头使用要求,采用熔化极气体保护焊(FCAW)方法配合E308LT1-4焊丝,采取三组不同的线能量。通过拉伸、低温冲击试验、硬度试验及金相组织观察等手段分析了-196℃焊接接头性能。试验结论显示,采用熔化极气体保护焊(FCAW)方法配合E308LT1-4焊丝焊接的304L不锈钢焊接接头的力学性能良好。  相似文献   

9.
Al-12.7Si-0.7Mg合金脉冲MIG焊接头组织与性能   总被引:1,自引:0,他引:1  
采用进口ER4047作为填充焊丝对Al - 12.7Si -0.7Mg合金热挤压板材实施脉冲MIG直缝对焊.利用金相观察、显微硬度测定及拉伸性能测试等方法研究了焊接接头的显微组织与力学性能.结果表明:利用优化的焊接工艺参数,获得了外观和内部质量良好的焊缝,焊接接头平均抗拉强度为180 MPa,达到基材的98%.  相似文献   

10.
针对铝合金焊接接头缺陷TIG重熔修复,采用6005A-T6铝合金作为母材,先采用MIG焊对母材进行焊接,焊后采用无脉冲TIG焊对焊趾处进行重熔,有无脉冲TIG焊对焊缝处进行重熔,对重熔前后的焊接试验件进行金相显微组织形貌及性能对比分析.结果表明,重熔后热影响区宽度明显大于重熔前,组织晶粒更加粗大,弥散相分布更加均匀;硬...  相似文献   

11.
FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirring and intense plastic deformation creat a fine recrystallized grain in the welding joint during FSW.As for TIG,the temperature of welding joint exceeds the melting point of welded material itself.The entire welding process belongs to the solidification of a small molten pool;and the microstructure of the joint takes on a typical casting structure.When the welding parameters were selected appropriately,the average ultimate tensile strength of FSW joints can reach 493 MPa,which is 83.6%of base metal;the average elongation is 52.1%of base metal.The average ultimate tensile strength of TIG joints is 475 MPa, which is 80.5%of base metal;the average elongation is 40.8%of base metal.The tensile test of FSW joints is superior to the TIG joints.The microhardness of FSW joint compared to base metal and TIG joint having a significant improvement,which arel95.5 HV,159.7 HV and 160.7 HV,respectively;grain refinement strengthening plays an important role in enhancing the microhardness.The electrochemical corrosion tests show that the joint of FSW 316L austenitic stainless steel has a good corrosion resistance.  相似文献   

12.
The present study aims at understanding the effect of various arc welding processes on the evolution of microstructure, mechanical properties, residual stresses and distortion in 9 mm thick type 316LN austenitic stainless steel weld joints. Weld joints of type 316LN stainless steel were fabricated by three different arc welding processes which were commonly employed in the nuclear industry. All the weld joints passed radiographic examination. Microstructural characterization was done using optical and scanning electron microscope. Volume fraction of δ-ferrite was lowest in the A-TIG weld joint. The A-TIG welded joint exhibited adequate strength and maximum impact toughness values in comparison to that of weld joints made by SMAW and FCAW processes. The A-TIG weld joint was found to exhibit lowest residual stresses and distortion compared to that of other welding processes. This was attributed to lower weld metal volume and hence reduced shrinkage in the A-TIG weld joint compared to that of weld joints made by FCAW and SMAW processes which involved v-groove with filler metal addition. Therefore, type 316LN stainless steel A-TIG weld joint consisting of lower δ-ferrite, adequate strength, high impact toughness, lower residual stresses and distortion was suited better for elevated temperature service compared to that of SMAW and FCAW weld joints.  相似文献   

13.
The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)was used in three different heat inputs,including 0.73,0.84,and 0.97 kJ/mm.The microstructural investigations of different zones including base metals,weld metal,heat-affected zones and interfaces were performed by optical microscopy and scanning electron microscopy.The mechanical properties were measured by microhardness,tensile and impact tests.It was found that with increasing heat input,the dendrite size and inter-dendritic spacing in the weld metal increased.Also,the amount of delta ferrite in the weld metal was reduced.Therefore,tensile strength and hardness were reduced and impact test energy was increased.The investigation of the interface between AISI 316L base metal and ER316L filler metal showed that increasing the heat input increases the size of austenite grains in the fusion boundary.A transition region was formed at the interface between API X70 steel and filler metals.  相似文献   

14.
采用钨极氩弧焊(TIG)和奥氏体不锈钢焊丝ER309L作为填充金属,对Fe-VC复合材料与45#钢的可焊性进行了研究.借助X衍射仪、扫描电镜分析焊缝金属的物相结构和组织形貌;应用电子探针测试了合金元素在焊缝中的成分分布;按照国家标准,测试了焊接接头的拉伸强度.结果表明:复合材料与45#钢实现了良好的冶金结合,合金元素在焊缝中呈梯度分布,拉伸试样的断裂位置均在复合材料处,表明所采用的焊接方法可靠,能够满足异种金属的焊接要求.  相似文献   

15.
A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.  相似文献   

16.
This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.  相似文献   

17.
In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.  相似文献   

18.
 CO2-shielded welding experiments of newly developed, 780 MPa super-high strength heavy-duty truck crossbeam steel were conducted, and the microstructure, microhardness, mechanical properties, and impact toughness of the welded joint were studied. The evolution of the microstructure of the welded joint occurred as follows: welding seam (acicular ferrite+proeutectoid ferrite)→fusion zone (granular bainite-long strip M/A island)→coarse grain zone (granular bainite-long strip or short bar M/A island)→fine grain zone (ferrite+pearlite+blocky M/A island)→mixed grained zone (ferrite+granular bainite+blocky M/A island)→base metal (proeutectoid ferrite+granular bainite-blocky or granular M/A island). Increasing the density of the grain boundaries can effectively improve the impact toughness, and the blocky M/A island hindered crack propagation more effectively than the long strip M/A island. The new hot-rolled 780 MPa super-high strength steel had excellent weldability. The welding technology was applied under the following conditions: welding voltage was 20 to 21 V, welding current was 200 to 210 A, and the gas flow rate was 25 L/min.  相似文献   

19.
Weldability of Low Carbon Transformation Induced Plasticity Steel   总被引:1,自引:0,他引:1  
Transformation induced plasticity (TRIP) steel exhibited high or rather high carbon equivalent (CE) because of its chemical composition, which was a particularly detrimental factor affecting weldability of steels. Thus the weldability of a TRIP steel (grade 600) containing (in mass percent, %) 0.11C-1. 19Si-1.67Mn was extensively studied. The mechanical properties and impact toughness of butt joint, the welding crack susceptibility of weld and heat affected zone (HAZ) for tee joint, control thermal severity (CTS) of the welded joint, and Y shape 60° butt joint were measured after the gas metal arc welding (GMAW) test. The tensile strength of the weld was higher than 700 MPa. Both in the fusion zone (FZ) and HAZ for butt joint, the impact toughness was much higher than 27 J, either at room temperature or at -20 ℃, indicating good low temperature impact ductility of the weld of TRIP 600 steel. In addition, welding crack susceptibility tests revealed that weldments were free of surface crack and other imperfection. All experimental results of this steel showed fairly good weldability. For application, the crossmember in automobile made of this steel exhibited excellent weldability, and fatigue and durability tests were also accomplished for crossmember assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号