首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用高真空磁控溅射仪制备了不同Cu含量的NbCN-Cu复合膜。采用X射线光电子能谱、X射线衍射仪、纳米压痕仪、扫描电镜、三维形貌仪和摩擦磨损仪对薄膜的微观结构、力学性能以及摩擦磨损性能进行了分析。结果表明,NbCN-Cu复合膜为面心立方δ-NbN、六方δ'-NbN和单质Cu相三相共存结构。随Cu含量增加,NbCN-Cu复合膜的硬度值先缓慢上升再迅速下降,Cu含量为2.27%时,获得最大硬度,为31.43 GPa。室温下,随Cu含量的增加,NbCN-Cu复合膜的摩擦系数先缓慢上升再快速上升,磨损率先缓慢下降再快速上升。当温度从室温温度上升到500℃,不同Cu含量的NbCN—Cu的摩擦系数均先升高后降低,磨损率逐渐上升,温度一定,Cu含量越高,磨损率越高;300~500℃内,温度一定,Cu含量越高,NbCN-Cu复合膜的摩擦系数越低。  相似文献   

2.
采用多靶反应磁控溅射技术制备一系列不同Ti含量的W-Ti-N复合膜。采用X射线衍射仪、扫描电镜、纳米压痕仪等检测方法对薄膜的微结构和力学性能进行表征。采用UMT-2功能摩擦试验机,在室温、大气环境、无润滑的条件下对W-Ti-N复合膜的摩擦性能进行评价,同时,探讨薄膜的致硬机理和摩擦机制。结果表明:Ti含量(原子分数,下同)为5%~23.48%时,薄膜硬度处于峰值区,硬度值最高可达39GPa,摩擦因数在0.4左右。当Ti含量高于23.48%时,硬度随着Ti含量增加而下降,摩擦因数随Ti含量的增加而升高。  相似文献   

3.
磁控溅射NbSiN复合膜的微结构和性能   总被引:1,自引:0,他引:1  
用磁控溅射方法制备了一系列不同Si含量的NbSiN复合薄膜。采用色散能谱仪、X射线衍射仪、纳米压痕仪、高温摩擦磨损仪表征复合膜的成分、微结构、力学性能以及室温和高温摩擦磨损性能。实验结果表明:NbSiN复合膜中只存在面心立方NbN结构,且呈(200)择优取向;Si的加入使复合膜硬度得到提高,Si含量为20.29%(原子分数)时硬度达到最大值32.1GPa,随着Si含量的进一步增加,复合膜的硬度逐步降低。室温和高温摩擦磨损实验结果表明,在室温时,NbSiN复合膜的平均摩擦因数在0.60~0.68之间,波动不大;而在650℃时,随着Si含量的增加,复合膜的平均摩擦因数从0.57降至0.42;650℃时的平均摩擦因数低于室温下的平均摩擦因数与氧化物的生成有关。  相似文献   

4.
采用反应磁控溅射技术,在300℃下制备不同Si含量的VAlSiN涂层。研究Si含量的变化对VAlSiN涂层相结构、生长形貌、化学状态、力学性能和摩擦磨损性能的影响。结果表明:不含Si的VAlN涂层呈现(111)择优取向生长。随着Si含量的增加,VAlSiN涂层的(111)择优取向逐渐消失,最终转变为非晶结构。Si含量大于1.8%(原子分数,下同)的VAlSiN涂层是由nc-VAlN和a-Si_3N_4组成的多相复合涂层。与VAlN涂层相比,添加少量Si(0.8%)的VAlSiN涂层晶粒尺寸减小,致密度得到提高,对应的涂层硬度也得到显著增大,达到30.1GPa。继续增加Si的含量,VAlSiN涂层的柱状生长结构被打断,硬度逐渐下降,最后稳定在22GPa左右。VAlSiN涂层的摩擦因数随着Si含量的增加先降低后升高。当Si含量为0.8%时涂层的磨损率最低,达1.2×10~(-16)m~3·N~(-1)·m~(-1)。  相似文献   

5.
为了探究调制周期对TiSiN/TaVN纳米多层膜性能的影响,使用磁控溅射仪在304不锈钢和硅片上沉积TiSiN/TaVN纳米多层膜,采用X射线衍射仪、扫描电镜、纳米压痕仪、划痕仪、表面性能综合测试仪等分析和探索不同调制周期的TiSiN/TaVN纳米多层膜的微观结构、力学性能和摩擦学性能。结果表明:TiSiN/TaVN纳米多层膜均为面心立方结构,在(111)晶面和(200)晶面呈现择优取向。随着调制周期的增大,TiSiN/TaVN纳米多层膜的硬度、弹性模量、膜基结合力等先增大后减小,摩擦系数先减小后增大。当调制周期为8 nm时,TiSiN/TaVN纳米多层膜具有优异的力学性能和摩擦学性能,硬度最高为28.79 GPa,弹性模量最大为301 GPa,膜基结合力最高为29.2 N。薄膜硬度强化的主要原因是固溶强化和交变应力场。当调制周期为8 nm时,TiSiN/TaVN纳米多层膜的摩擦系数最小值为0.14,磨损机理主要为磨粒磨损和氧化磨损。TiSiN/TaVN纳米多层膜摩擦学性能改善的主要原因之一是摩擦过程中V元素与氧气反应形成了具有自润滑性能的Magnéli相氧化物V2  相似文献   

6.
通过反应磁控溅射法分别沉积了不同Ag含量(Ag/(Ag+Cr)=2.9~21.2%(原子比))的CrN/Ag复合膜,采用能谱仪、X射线衍射仪、纳米压痕仪、扫描电镜、摩擦磨损仪等研究了CrN/Ag复合膜的化学成份、微观结构、力学性能及摩擦磨损性能。结果表明:CrN/Ag薄膜为面心立方结构,由fcc-CrN及fcc-Ag构成。薄膜晶粒尺寸随Ag含量的升高逐渐降低。薄膜硬度随Ag含量的升高先升高后降低,当Ag含量为8.3%时,薄膜硬度最高,其最高值为23 GPa。薄膜硬度受细晶强化与软质Ag相的共同作用。CrN/Ag薄膜平均摩擦系数及磨损率随Ag含量的升高先降低后升高,当Ag含量为8.3%时,薄膜平均摩擦系数与磨损率最小,其最小值分别为0.50和0.68×10~(-8)mm~3。/N·mm。薄膜平均摩擦系数及磨损率主要受低剪切强度Ag含量和H/E值的影响。  相似文献   

7.
谭国静  杨凯  褚学军 《包装工程》2023,44(13):49-54
目的 探究温度变化对几种包装用复合膜阻隔性和力学性能的影响。方法 采用4种不同材质的复合膜为研究对象,通过调节温度变化,分别对复合膜进行拉伸强度、断裂伸长率、穿刺强度、直角撕裂力、氧气透过量、水蒸气透过量测试。结果 随着温度的升高,复合膜的拉伸强度、穿刺强度、直角撕裂力呈现逐渐变小的趋势,断裂伸长率呈现先增大后减小的趋势,氧气透过量、水蒸气透过量呈现逐渐变大的趋势。温度从15 ℃升至55 ℃,BOPP/EVOH复合膜的力学性能和阻隔性能受温度影响小,其中拉伸强度降低了5.2 MPa,断裂伸长率增加了10%,穿刺强度降低了4.4 N,直角撕裂力降低了5.0 N,水蒸气透过量提高了2.34 g/(m2.d),氧气透过量增加了12.5 cm³/(m2.d.0.1 MPa)。结论 根据实验探究,温度是影响包装复合材料性能的重要因素,为不同温度条件下不同材质复合膜的性能变化提供了数据指导,BOPP/EVOH复合膜的综合性能受温度变化影响最小。  相似文献   

8.
SiO2对低密度聚乙烯摩擦性能与力学性能影响的研究   总被引:2,自引:2,他引:0  
防粘剂可以改善聚乙烯的摩擦性能,起到爽滑的作用.为了定量的描述SiO2防粘剂对聚乙烯摩擦系数的影响,在低密度聚乙烯中加入沉淀法合成的SiO2改善其摩擦性能,并对其摩擦与力学性能进行测试与分析.实验结果表明:SiO2可以明显降低LDPE薄膜的摩擦系数;材料的力学性能没有发生太大的变化;且SiO2的加入提高了LDPE薄膜的极性.  相似文献   

9.
MoS2/Ti复合膜的摩擦磨损研究   总被引:7,自引:2,他引:5  
采用直流磁控溅射方法在SKD-11钢的表面沉积一层MoS2/Ti复合膜,选择沉积厚度为1 μm和2 μm的复合膜进行摩擦磨损实验,结果表明,MoS2/Ti复合膜为纳米复合膜,能大大降低钢表面的摩擦系数,改善钢的摩擦性能.适当增加膜的厚度,有利于提高钢的抗磨损性能.  相似文献   

10.
采用直流磁控溅射方法在SKD-11钢的表面沉积一层MoS2/Ti复合膜,选择沉积厚度为1μm和2μm的复合膜进行摩擦磨损实验,结果表明,MoS2/Ti复合膜为纳米复合膜,能大大降低钢表面的摩擦系数,改善钢的摩擦性能。适当增加膜的厚度,有利于提高钢的抗磨损性能。  相似文献   

11.
为了提高碳化物靶溅射薄膜的结晶程度和相应的力学性能, 采用等化学计量比的VC靶(n(C):n(V)=1:1)和富V的VC靶(n(C):n(V)=0.75:1)通过磁控溅射方法制备了一系列VC薄膜, 利用EDS、XRD、SEM和微力学探针研究了靶成分、溅射气压和基片温度对薄膜化学成分、微结构和力学性能的影响. 结果表明, 对于等化学计量比的VC靶, 在Ar气压为2.4~3.2 Pa的范围内可获得结晶程度和硬度较高的VC薄膜, 其最高硬度为28 GPa. 而采用富V的VC靶时, 在较低的Ar气压(0.6~1.8 Pa)下就可获得结晶程度高的VC薄膜, 其硬度达到31.4 GPa. 可见, 相对于溅射参数的Ar气压和基片温度, 靶的成分对于所获薄膜的成分、微结构和力学性能影响更显著, 因而适当提高靶中金属组分的含量是获得结晶良好且具高硬度的VC薄膜更为有效的途径.  相似文献   

12.
采用反应磁控溅射制备了TiAlN/VN纳米多层膜, 并使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、纳米压痕仪和多功能摩擦磨损试验机对多层膜的微结构与力学和摩擦学性能进行了表征和分析。研究结果表明: 不同调制周期的TiAlN/VN多层膜均呈典型的柱状晶生长结构, 插入VN层并没有打断TiAlN涂层柱状晶的生长。在一定调制周期下, TiAlN/VN纳米多层膜中的TiAlN和VN层之间能够形成共格生长结构, 其硬度和弹性模量相比于TiAlN单层膜均有显著提升, 其中, TiAlN (10 nm)/VN (10 nm)的硬度和弹性模量最大增量分别达到39.3%和40.9%。TiAlN/VN纳米多层膜的强化主要与其共格界面生长结构有关。另外, TiAlN单层膜的摩擦系数较高(~0.9), 通过周期性地插入摩擦系数较低的VN层能够使得TiAlN的摩擦系数大大降低, TiAlN/VN纳米多层膜的摩擦系数最低为0.4。  相似文献   

13.
钼薄膜的制备、力学性能和磨损性能   总被引:1,自引:0,他引:1  
采用直流磁控溅射技术在GCr15轴承钢底材上沉积了钼薄膜。利用XRD,AFM对不同负偏压下沉积的钼薄膜的结构和表面形貌进行了表征;利用纳米压痕仪对薄膜的硬度和膜基结合强度进行了测定;最后利用DF-PM型动静摩擦系数精密测定仪和扫描电镜(SEM)研究了薄膜的硬度、残余模量与负偏压的关系。结果表明:利用直流磁控溅射法制备的钼薄膜的硬度随负偏压的变化存在最大值,另外负偏压还影响薄膜的微结构、粗糙度以及膜基结合力,但负偏压的改变对钼薄膜的摩擦系数影响不大。  相似文献   

14.
采用射频磁控共溅射法在硅衬底上沉积Cu/SiO2 复合薄膜,然后在N2保护下高温退火,再于空气中自然冷却氧化,制备出低维CuO纳米结构,并对其微观结构和光致发光进行研究. 退火温度为1100℃时样品中主晶相为立方晶系的CuO(200)晶面,薄膜样品表面出现纳米线状结构,表面组分主要包括Cu、O元素,冷却氧化形成CuO/SiO2复合薄膜. 该温度下退火后,光致发光谱中出现紫外光和紫光,这是由于复合薄膜中CuO的导带底到Cu空穴缺陷能级的跃迁导致的.  相似文献   

15.
钟志有  龙路  陆轴  龙浩 《材料导报》2015,29(16):8-12
采用磁控溅射方法在玻璃基片上制备了Ga-Ti共掺杂ZnO(GTZO)透明导电薄膜,通过XRD、四探针仪和分光光度计测试,研究了氩气压强对GTZO薄膜光电性能和晶体结构的影响。结果表明:所有GTZO薄膜均为(002)择优取向的六角纤锌矿结构,其光电性能和晶体结构与氩气压强密切相关。当氩气压强为0.4Pa时,GTZO薄膜具有最大的晶粒尺寸(85.7nm)、最小的压应力(-0.231GPa)、最高的可见光区平均透射率(86.1%)、最低的电阻率(1.56×10-3Ω·cm)和最大的品质因子(4.28×105Ω-1·cm-1),其光电综合性能最佳。另外,采用光学表征方法计算了薄膜的光学能隙和折射率,并利用有效单振子理论对折射率的色散性质进行了分析,获得了GTZO薄膜的色散参数。  相似文献   

16.
Cu-Zn掺杂对TiN复合膜层组织性能的调制   总被引:1,自引:0,他引:1  
利用磁控溅射方法在不锈钢表面沉积了Cu-Zn掺杂TiN复合膜, 研究不同的Cu、Zn含量对膜层结构和性能(硬度、耐磨性能以及耐腐蚀性能)的影响. 结果表明, 掺杂的Cu、Zn可以阻止TiN晶粒生长, 随掺杂量增加TiN晶粒细化, Cu、Zn含量比较高时由于金属相长大而使膜层组织粗化. 当Cu≤10.38at%, Zn≤2.19at%时, TiN以(111)晶向择优生长, 且随掺杂量增加TiN(200)晶向逐渐增强. XPS结果表明膜层主要由TiN和单质Cu组成. 当掺杂Cu为10.38at%、Zn为2.19at%时,复合膜具有较高的硬度和较好的耐磨性能. 尽管耐腐蚀性能随着Cu、Zn含量的增加而下降, 但少量的Cu-Zn掺杂可显著提高膜层钝化能力.  相似文献   

17.
采用室温磁控溅射技术在Ti6Al4V表面制备出高硬SiC薄膜,对其组织结构、纳米压痕行为和摩擦磨损性能进行了研究。结果表明:实验制备的SiC薄膜呈非晶态,其纳米硬度、弹性模量分别为26.8GPa和229.4GPa;在以氮化硅球(半径为2mm)为对摩件的室温Kokubo人体模拟体液下,其磨损速率在10-5 mm3 m-1 N-1级,载荷低(50g)时摩擦因数约为0.173,载荷高(200g)时摩擦因数约为0.280,此时薄膜自身发生局部破裂。  相似文献   

18.
为了进一步评价Zr含量对TiZrN薄膜摩擦学性能的影响,采用反应磁控溅射法制备了Ti_(1-x)Zr_xN薄膜(0.14x0.56)。通过XRD,SEM技术分析了TiZrN薄膜的微观结构,考察了不同Zr含量时TiZrN薄膜的摩擦磨损性能。结果表明:TiZrN薄膜的晶体结构不因Zr的加入而改变,仍为面心立方结构;TiZrN薄膜为合金化复合膜,Zr以置换方式固溶于TiN中,随着Zr含量的升高,晶粒明显细化,柱状晶生长模式发生转变;TiZrN薄膜结构致密且硬度更高,小晶粒在摩擦磨损中能有效阻止裂纹的扩展,其抗摩擦磨损性能较TiN薄膜有明显的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号