首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
对流换热边界下梯度功能材料板瞬态热传导有限元分析   总被引:3,自引:1,他引:2  
用有限元法与有限差分法相结合的方法 ,对处在对流换热边界条件下的梯度功能材料板的瞬态热传导问题进行了分析 ,并且通过由ZrO2 和Ti 6A1 4V组成的梯度功能材料板对本方法的正确性进行了检验 ,最后给出了对流换热边界下的瞬态温度场分布。数值计算结果表明 :材料组分的分布形状系数M、环境介质温度和对流换热系数的变化对梯度功能材料板的瞬态温度场分布均有明显的影响。本文结果为梯度功能材料的优化设计和进一步的热应力分析提供了理论计算依据。  相似文献   

2.
用有限元法和有限差分法相结合的方法,分析了由 ZrO2和Ti-6Al-4V组成的变物性梯度功能材料板在对流换热边界条件下的非线性瞬态热传导问题,检验了方法的正确性,给出了对流换热边界下的瞬态温度场分布,并与不考虑变物性时的结果进行了比较。结果表明:在精确计算瞬态温度场分布时,变物性是影响梯度功能材料板瞬态温度场的最重要因素之一。此外,材料组分的分布形状系数、环境介质温度和对流换热系数的变化对变物性梯度功能材料板的瞬态温度场分布均有明显的影响。此结果为材料设计和进一步的热应力分析提供了准确的计算依据。  相似文献   

3.
基于线性热弹性理论的基本方程,采用两个位移分量,两个应力分量,温度变量和一个热流分量作为状态变量,应用状态空间理论,建立了功能梯度材料轴对称圆板结构在动态热载荷作用下的状态方程,考虑了运动惯性项以及热传导过程中的耦合效应,根据微分求积法,将状态方程沿径向进行离散.采用Laplace变换和打靶法,数值求解了材料常数按幂率变化的周边固支圆板在热冲击下的热响应.为求解功能梯度结构三维热弹性瞬态响应提供了一种方法.分析了组分材料分布对功能梯度圆板的热响应行为,包括板内温度变化,横向挠度以及板内应力分量的影响规律.  相似文献   

4.
3D打印技术的发展使复杂梯度结构的制造更加容易,有必要对复杂梯度问题的求解开展研究;目前,关于梁结构模量沿轴向或厚度方向梯度变化问题的研究已经较多,但对模量沿2个方向同时变化的研究较少。因此,通过复数形式傅里叶分解的方法对模量以指数形式沿厚度方向和轴向同时变化梯度平面复合梁问题进行了求解。首先,采用弹性力学半逆解法得到了问题的四阶变系数偏微分控制方程的通解;然后,利用级数展开,求解了对称载荷作用下该梁的特解;最后,通过与有限元结果进行对比,说明了级数解的正确性。结果表明:当梯度双向变化时,梁结构的应力分布和变形情况更加复杂,模量较高的位置应力较大,而模量较低的位置应力较小。提出的级数解还可推广至其他相关的梯度双向变化非均匀平面和半平面问题的研究。   相似文献   

5.
董利文  曹飞飞 《硅谷》2012,(23):129-130
功能梯度材料(简称FGM)是一种材料性质非均匀变化的特殊材料。根据热传导问题的基本方程,采用变分有限元法、有限差分法,结合算例,通过数值计算,最终得到冷却边界条件下夹FGM复合板瞬态热应力的分布规律,并主要研究孔隙率变化对FGM复合板瞬态热应力的影响。结果表明:当无限长板不能伸长、只能弯曲时,孔隙率对该变物性材料板瞬态热应力的影响比较显著。  相似文献   

6.
采用复合电沉积法制备Ni/ZrO2梯度镀层.SEM测试表明,沿镀层生长方向,ZrO2含量由0逐渐增加到21%(体积分数),呈梯度分布;高温氧化实验结果表明,梯度镀层在800℃处理24h后氧化增重仅为纯镍镀层的1/6,氧化处理并未改变镀层中ZrO2微粒的梯度分布.结构分析表明,ZrO2微粒的掺杂使梯度镀层晶粒细化,结晶细致,可阻止高温氧化时氧原子向金属内部扩散.弥散分布的ZrO2对金属镍高温氧化时具有活性元素效应,可阻止Ni的短路扩散,降低氧化增重速率.因此,Ni/ZrO2梯度镀层具有优良的高温氧化性能,可用于高温氧化气氛之中.热应变特性研究表明,沿镀层厚度方向,热应变变化平缓,有效地缓解了界面处材料热失配,从而降低了材料的热应力.  相似文献   

7.
Al2O3—Ti系梯度功能材料残余热应力有限元分析   总被引:7,自引:1,他引:6  
采用有限元方法对Al2O3-Ti系梯度功能材料在制备过程中产生的残余热应力进行了线弹性分析,详细讨论了梯底层数目,梯度层厚度和成分梯度指数对应务大小和分布的影响,确定了各项最佳参数。非梯度功能材料与优化后的梯度功能材料的残余热应务对比结果显示;梯度功能材料缓和热应力的效果十分显著。  相似文献   

8.
TiC-Ni梯度功能材料的优化设计   总被引:9,自引:0,他引:9  
对TiC-Ni梯度功能材料在制备过程中的残余热应力进行了计算机有限元模拟,考察了梯度组成分布指数对热应力大小,最大热应力发生的位置以及纯陶瓷TiC侧热应力状态的影响,综合分析了热应力的大小和分布,得到了缓和制备热应力的梯度组成分布指数P=1.0的优化设计结果。  相似文献   

9.
Al3O—Ti系梯度功能材料残余热应力的有限元分析   总被引:2,自引:0,他引:2  
李臻熙  张同俊 《功能材料》1997,28(5):533-536
采用有限元方法对Al2O3-Ti系梯度功能材料在制备过程中产生的残余热应力进行了线 性性分析。详细讨论了梯度层数目、梯度层厚度和成分梯度指数对应力大小和分布的影响,确定了各项最佳参数。非梯度功能材料与优化后的梯度功能材料的残余热絷力对此结果显示:梯度功能赫兹 热应力的效果十分显著。  相似文献   

10.
对流换热边界下梯度功能材料板瞬态热传导有限元分析   总被引:2,自引:0,他引:2  
用有限元法与有限差分法相结合的方法,对处在对流换热边界条件下的梯度功能材料板的瞬态热传导问题进行了分析,并且通过对ZrO2和Ti-6Al-4V组成的梯度功能材料板对本方法的正确性进行了检验,最后给出了对流换热边界下的瞬态温度场分布。数值计算结果表明:材料组成的分布形状系数M、环境介质温度和对流换热系数的变化对梯度功能材料板的瞬态温度场分布有明显的影响。本文结果为梯度功能材料的优化设计和进一步的热应力分析提供了理论计算依据。  相似文献   

11.
The transient thermoelastic response of a thick hollow cylinder made of functionally graded material under thermal loading is studied. The generalized theory of thermoelasticity based on Green?CLindsay model is used in this paper. The thermal and mechanical properties of the functionally graded material are assumed to be varied in the radial direction according to a power law variation as a function of the volume fractions of the constituents. The heat conduction equation and the equation of motion are solved by using Galerkin finite element method. All the finite element calculations were done by using commercial finite element program FlexPDE. The transient temperature, radial displacement, and thermal stresses distribution through the radial direction of the cylinder are plotted. The material composition effect on temperature, radial displacement and thermal stresses is shown.  相似文献   

12.
A new computational method based on the equivalent domain integral (EDI) is developed for mode I fracture analysis of orthotropic functionally graded materials (FGMs) subjected to thermal stresses. By using the constitutive relations of plane orthotropic thermoelasticity, generalized definition of the J-integral is converted to an equivalent domain integral to calculate the thermal stress intensity factor. In the formulation of the EDI approach, all the required thermomechanical properties are assumed to have continuous spatial variations through the functionally graded medium. Developed methodology is integrated into a fracture mechanics research finite element code FRAC2D using graded finite elements that possess cubic interpolation. Steady-state and transient temperature distribution profiles in orthotropic FGMs are computed using the finite elements based heat transfer analysis software HEAT2D. EDI method is validated and domain independence is demonstrated by comparing the numerical results obtained using EDI to those calculated by an enriched finite element method and to those available in the literature. Single and periodic edge crack problems in orthotropic FGMs are examined in order to study the influences of principal thermal expansion coefficient and thermal conductivity components, relative crack length and crack periodicity on the thermal stress intensity factors. Numerical results show that among the three principal thermal expansion coefficient components, the in-plane component perpendicular to the crack axis has the most significant influence on the mode I stress intensity factor. Gradation profile of the thermal expansion coefficient parallel to the crack axis is shown to have no effect on the outcome of the fracture analysis.  相似文献   

13.
Transient thermal stresses in the strip with boundaries oblique to the functionally graded direction are studied theoretically. The transient temperature and the transient thermal stresses are derived by the use of the variable separation and the stress function method. The material properties are assumed to be exponential functions of the position along the functionally graded direction. The prescribed surface heat flux is given for temperature condition, and the initial temperature is assumed to be zero over the strip. The strip is free of surface traction for mechanical boundary condition. The numerical calculations are carried out for ZrO2 /Ti-6Al-4V functionally graded materials. The numerical results of temperature and thermal stresses are illustrated with the lapse of time for certain oblique angles.  相似文献   

14.
In the present study, finite element formulation based on higher order shear deformation plate theory is developed to analyze nonlinear natural frequencies, time and frequency responses of functionally graded plate with surface-bonded piezoelectric layers under thermal, electrical and mechanical loads. The von Karman nonlinear strain–displacement relationship is used to account for the large deflection of the plate. The material properties of functionally graded material (FGM) are assumed temperature-dependent. The temperature field has uniform distribution over the plate surface and varies in the thickness direction. The considered electric field only has non-zero-valued component Ez. Numerical results are presented to study effects of FGM volume fraction exponent, applied voltage in piezoelectric layers, thermal load and vibration amplitude on nonlinear natural frequencies and time response of FGM plate with integrated piezoelectric layers. In addition, nonlinear frequency response diagrams of the plate are presented and effects of different parameters such as FGM volume fraction exponent, temperature gradient, and piezoelectric voltage are investigated.  相似文献   

15.
In this paper a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to impact internal pressure is considered. The axisymmetric conditions are assumed for the 2D-FG cylinder. The finite element method with graded material properties within each element is used to model the structure, and the Newmark direct integration method is implemented to solve the time dependent equations. The time histories of displacements, stresses and 2D wave propagation are investigated for various values of volume fraction exponents. Also the effects of mechanical properties distribution in radial and axial direction on the time responses of the FG cylinder as well as the stress distribution are studied and compared with a cylinder made of 1D-FGM. The achieved results show that using 2D-FGM leads to a more flexible design. To verify the presented method and data, the results are compared to published data.  相似文献   

16.
Wang X  Qin Y  Wang B  Zhang L  Shen Z  Lu J  Ni X 《Applied optics》2011,50(21):3725-3732
A spatial axisymmetric finite element model of single-crystal silicon irradiated by a 1064 nm millisecond laser is used to investigate the thermal stress damage induced by a millisecond laser. The transient temperature field and the thermal stress field for 2 ms laser irradiation with a laser fluence of 254 J/cm(2) are obtained. The numerical simulation results indicate that the hoop stresses along the r axis on the front surface are compressive stress within the laser spot and convert to tensile stress outside the laser spot, while the radial stresses along the r axis on the front surface and on the z axis are compressive stress. The temperature of the irradiated center is the highest temperature obtained, yet the stress is not always highest during laser irradiation. At the end of the laser irradiation, the maximal hoop stress is located at r=0.5 mm and the maximal radial stress is located at r=0.76 mm. The temperature measurement experiments are performed by IR pyrometer. The numerical result of the temperature field is consistent with the experimental result. The damage morphologies of silicon under the action of a 254 J/cm(2) laser are inspected by optical microscope. The cracks are observed initiating at r=0.5 mm and extending along the radial direction.  相似文献   

17.
A coupled transient thermoelastic behaviour of an axial-cracked hollow circular cylinder subjected to a sudden heating is investigated in this study. It is shown that surface heating may induce the compressive thermal stress near the inner surface of the cylinder which in turn may force the cracked surfaces to close together. Assuming that the existence of the crack does not alter the temperature distribution, we can divide this problem into two parts and solve it by the principle of superposition. First, the temperature and transient thermal stress distributions along the axisymmetric surface of the imaginary cylinder without crack are obtained by finite element implicit time integration method Secondly, the opposite sense of the stress distributions along the cracked surfaces, which is obtained previously, is treated as the traction boundary conditions; the contact length and contact pressure of the real cracked cylinder are obtained by modified elimination finite element scheme. Finally, we also obtained the normalized stress intensity factor for the crack tip of the cylinder. It is concluded that the effect due to thermoelastic coupling term on stress intensity factor becomes more important for higher coupling coefficient, and this coupling term also results in a small time lag in temperature, thermal stress and stress intensity factor.  相似文献   

18.
功能梯度材料因其内部组分沿着空间位置连续变化,能有效缓解热应力集中等现象,在高超音速飞行器的热防护系统设计中具有良好的应用前景.以金属-陶瓷功能梯度板为研究对象,探讨在不同热环境下功能梯度板热传导、热变形和热应力的变化规律.首先,基于功能梯度材料的幂律分布模型,分析了线性温度场、正弦温度场、热流温度场和非线性温度场四种...  相似文献   

19.
A nonlinear finite element model is provided for the nonlinear random response of functionally graded material panels subject to combined thermal and random acoustic loads. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations are derived using the first-order shear-deformable plate theory with von Karman geometric nonlinearity and the principle of virtual work. The thermal load is assumed to be steady state constant temperature distribution, and the acoustic excitation is considered to be a stationary white-Gaussian random pressure with zero mean and uniform magnitude over the plate surface. The governing equations are transformed to modal coordinates to reduce the computational efforts. Newton–Raphson iteration method is employed to obtain the dynamic response at each time step of the Newmark implicit scheme for numerical integration. Finally, numerical results are provided to study the effects of volume fraction exponent, temperature rise, and the sound pressure level on the panel response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号