首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
张剑桥  刘承志 《特殊钢》2011,32(6):60-61
316L超低碳不锈钢(/%:0.010~0.013C、17.50~17.67Cr、10.10~10.60Ni、1.89~2.02Mo、0.020~0.201N)由200 kg真空感应炉冶炼,并经550 mm轧机热轧成15 mm钢板。研究了1 050℃40 min水冷,750℃25~100 h空冷后316L钢的组织和冲击韧性。结果表明,随时效时间增加,316L钢的冲击功下降;同样时效时间,0.201%N的高氮316L钢的冲击功低于0.020%N较低氮316L钢,750℃100 h时效后两者的冲击功分别为40 J和150 J。低氮316L钢主要析出物为碳化物,在晶界和晶内呈细小弥散分布,尺寸为3~5μm;高氮316L钢析出物为100~200μm氮碳化物和σ-相,沿晶界分布。  相似文献   

2.
研究了N、Cr、Mo和Ni四种合金元素含量的变化对核电主管道用固溶态316LN不锈钢的晶粒尺寸以及常规力学性能和点蚀性能的影响.随着N含量的升高,316LN的晶粒明显细化,其在固溶处理过程中晶粒长大趋势也减小.N含量的升高可改善316LN的力学性能和耐点蚀性能,但是当N质量分数达到0.20%时,其耐点蚀性能又开始变差.晶粒细化对316LN强度的影响远小于N含量对316LN强度的影响.Cr及Ni含量对316LN的晶粒尺寸及抗拉强度、屈服强度等力学性能影响不大;Cr含量增加可轻微改善316LN的抗点蚀能力,Ni元素对316LN的耐点蚀性能影响不大,但可增大钝态的腐蚀速度从而不利于钝化膜的稳定.随Mo含量增加,316LN的晶粒尺寸略有减小,强度增大,延伸率显著降低,耐点蚀能力改善.   相似文献   

3.
316L奥氏体不锈钢的氮合金化   总被引:2,自引:0,他引:2  
采用金相显微镜、XRD、拉伸试验机及高低温冲击试验机等,并结合Thermo-calc软件计算研究了氮对316L奥氏体不锈钢微观组织、析出相、力学性能和耐点蚀性能的影响.结果表明:氮合金化能够抑制316L不锈钢中σ相和Chi相的析出,增加Cr2N的析出倾向,对奥氏体晶粒细化不明显;氮的添加能够提高316L不锈钢的室温强度和-100℃以上温度的夏比冲击功,降低-100℃以下的夏比冲击功,但对室温拉伸塑性影响不明显.此外,氮能够改善316L不锈钢的耐点蚀能力.  相似文献   

4.
445M铁素体不锈钢缝隙腐蚀性能的研究   总被引:1,自引:0,他引:1  
顾玥  詹肇麟  荣凡 《特殊钢》2011,32(3):65-67
研究了445M铁素体不锈钢(%:0.004~0.005C、22.24~22.29Cr、1.10~1.65Mo、0.015~0.016P、0.003~0.004S、0.012~0.016N、0.22~0.38Ti)和316L奥氏体不锈钢(%:0.022C、16.80Cr、10.19Ni、2.02Mo、0.025P、0.001S、0.046N)在40~60℃氯离子浓度(250~5 000)×10-6的氯化钠溶液的缝隙腐蚀性能。结果表明,445M铁素体不锈钢的耐缝隙腐蚀性能优于316L奥氏体不锈钢;当445M钢中的Mo含量由1.10%提高至1.65%时,钢的耐缝隙腐蚀性能明显提高,表明点蚀当量Cr+3.3Mo是衡量不锈钢耐点蚀和耐缝隙腐蚀的重要指标。  相似文献   

5.
超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响   总被引:20,自引:2,他引:18  
用电化学测试、化学浸泡等方法研究了超级奥氏体不锈钢00Cr24Ni22Mo7Mn3CuN(654SMO)的耐点腐蚀和耐缝隙腐蚀的性能。通过改变氮含量,研究了氮对奥氏体不锈钢的耐点腐蚀和耐缝隙腐蚀性能的影响,结果表明,氮和适量的铬、钼结合,能显提高奥氏体不锈钢的耐点腐蚀和缝隙腐蚀的能力,并且随着氮含量的增国,砥体不锈钢的耐点腐蚀和耐缝隙腐蚀的能力也增强,对比实验表明,超级奥氏体不锈钢在耐点腐蚀,缝隙腐蚀等局部腐蚀性能方面可以和镍基合金C-276媲美,甚至优于镍基合金。  相似文献   

6.
奥氏体-铁素体双相不锈钢简称双相不锈钢,具有优良的力学性能和耐腐蚀性能,S22053双相不锈钢在石油及天然气工业,化学工业等行业具有广泛的应用。材料特性第二代双相不锈钢一般称为标准双相不锈钢,成分特点是超低碳、含氮,其典型成分为22%Cr+5%Ni+3%Mo+0.17%N(见表1,机械性能见表2)。与第一代双相不锈钢相比,S22053进一步提高氮含量,增强在氯离子浓度较高的酸性介质中的耐应力腐蚀和抗点蚀性能。氮是强烈的奥氏体形成元素,加入到双相不锈  相似文献   

7.
《特殊钢》2016,(4)
在25 kg真空感应炉充氩气或大气下加氮化铬铁熔炼成不同氮含量的试验用1~2Cr13Mn9Ni4钢(/%:0.08~0.18C,0.17~0.34Si,8.11~9.27Mn,0.008~0.028P,0.007~0.032S,12.57~13.34Cr,4.05~4.65Ni,0~0.34N)。该钢经锻造、热轧成0.8 mm钢带,再进行0~45%的冷轧变形。试验研究了冷轧变形量和氮含量对该钢组织,力学性能和耐蚀性的影响。结果表明,通过降碳和加适量氮可改善Cr13Mn9Ni4钢的强度和塑性;冷变形钢在敏化状态下均有不同程度的晶间腐蚀倾向;氮有利于提高亚稳奥氏体不锈钢相组成的稳定性;氮使不含稳定化元素的亚稳奥氏体不锈钢在SO_4~(2-)介质中易于钝化,提高了在非敏化状态下的耐腐蚀性,同时明显提高了在Cl-介质中耐点蚀性能。  相似文献   

8.
316L不锈钢为常用的耐蚀合金材料,然而其在海洋大气环境服役时易遭受点腐蚀而发生失效。通过点腐蚀速率、临界点蚀温度、点蚀电位、极化曲线测试等评价方法,对经过不同表面处理(光亮退火、抛光、酸洗钝化)后的316L不锈钢的耐点蚀性能进行测试分析。结果表明,不同表面处理对316L不锈钢的临界点蚀温度影响不大,但会使点腐蚀速率、点蚀电位有所差异;在测试条件下,抛光及酸洗钝化均可有效提高316L不锈钢的耐点蚀性能,其中酸洗钝化态的耐点蚀性能最好,因此建议对海洋工程用316L不锈钢产品在使用前进行酸洗钝化处理。  相似文献   

9.
《特殊钢》2017,(3)
根据双膜理论,建立了不锈钢精炼中向钢水吹氮气合金化过程的动力学模型。通过硅钼棒炉研究了恒压(101 kPa),恒温(1 833 K)和恒流量(0.3 L/min)时316L不锈钢(/%:0.031C,0.57Si,1.00Mn,0.021P,0.004S,16.13Cr,10.12N,2.12Mo,0.028N)吹氮时间(0~70 min),氮分压(N_2:Ar=2:1,1:2和1:1)和温度(1 773~1 833K)对该钢氮合金化的影响。结果表明,钢中氮含量随着吹氮时间、氮分压的增加而增加,随吹氮流量增加钢液氮含量达到饱和的时间缩短,氮的溶解度随着钢液温度的降低而升高,合适的钢水温度为~1 500℃。120 t VOD 316L不锈钢工业生产试验表明,在氮气流量42×3 m~3/h时,VOD真空阶段吹氮合金化,钢中的氮含量可达0.04%。  相似文献   

10.
日本金属材料技术研究所在研究耐海水腐蚀不锈钢SUS316试验中,对超高氮和高纯度SUS316L不锈钢在坩埚中进行再熔炼制造出钢板(以下称CC钢)作耐腐蚀性能试验,提高了耐局部腐蚀性能。从市场购买的低硫SUS316L圆钢(Φ55mm,以下称CS钢)为原料,其成分(%)0014C056Si066Mn0026P0001S1378Ni1682Cr216Mo003N0003O,在Ar气氛下使用熔剂CaF2熔炼成CC钢,明显降低N、O含量提高CC钢纯净度,其实际成分(%)0014C055Si061Mn0023P<0001S1350Ni1630Cr210Mo001N00003O。CC钢经过锻造、热轧、冷轧后轧…  相似文献   

11.
In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their applications are introduced. These steels are nitrogen-controlled products 304 N and 316 LN,nitrogen containing economical products BN series and high-nitrogen stainless steel( HNS) series. The results show that the presence of nitrogen can significantly improve the strength and corrosion resistance of steel produced. By nitrogen alloying,economical austenitic stainless steels w ith considerably less nickel than 304 can be obtained; the corrosion resistances of these steels are almost the same as 304. Furthermore,by a scientific approach of nitrogen alloying,high-nitrogen steel of0. 8% nitrogen content is fabricated under the non-pressurized conditions,and the pitting potential of this steel is 1. 0 V. At present,nitrogen-alloyed steels developed by Baosteel are w idely utilized in the manufacture of cryogenic storage containers,transportation containers,and many household w ares.  相似文献   

12.
胡伟星 《特殊钢》2016,37(4):64-68
在25 kg真空感应炉充氩气或大气下加氮化铬铁熔炼成不同氮含量的试验用1~2Cr13Mn9Ni4钢(/%:0.08~0.18C,0.17~0.34Si,8.11~9.27Mn,0.008~0.028P,0.007~0.032S,12.57~13.34Cr,4.05~4.65Ni,0~0.34N)。该钢经锻造、热轧成0.8 mm钢带,再进行0~45%的冷轧变形。试验研究了冷轧变形量和氮含量对该钢组织,力学性能和耐蚀性的影响。结果表明,通过降碳和加适量氮可改善Cr13Mn9Ni4钢的强度和塑性;冷变形钢在敏化状态下均有不同程度的晶间腐蚀倾向;氮有利于提高亚稳奥氏体不锈钢相组成的稳定性;氮使不含稳定化元素的亚稳奥氏体不锈钢在SO42-介质中易于钝化,提高了在非敏化状态下的耐腐蚀性,同时明显提高了在Cl-介质中耐点蚀性能。  相似文献   

13.
AOD精炼高氮奥氏体不锈钢1Cr22Mn15N的工艺实践   总被引:3,自引:1,他引:2  
用 20 t AOD精炼成分(%)为1.84C ,2.18Mn ,24.88Cr的粗炼钢水 ,经吹O2 、N2 ,加电解锰、硅铁、铝块以及NCr合金成分微调 ,冶炼出(%) 0.12C ,0.42Si,14.96Mn ,0.026P ,0.001S ,22.57Cr,0.56N的高氮奥氏体不锈钢 1Cr22Mn15N。精炼钢水浇铸成590kg锭 ,初轧轧成 135mm × 157mm坯 ,再经连轧成Φ8~12mm的棒材。成品材固溶处理后的屈服强度为565~585MPa ,抗拉强度920~955 MPa ,延伸率为54.5 %~56.5% ,具有优良的耐腐蚀性能  相似文献   

14.
为了获得桥梁用不锈钢复合板良好的综合性能,采用控轧控冷(thermal mechanical control process,简称TMCP)工艺轧制了桥梁用不锈钢复合板316L+Q370qD,利用金相、扫描、拉伸、冲击、弯曲、剪切和晶间腐蚀等手段研究了该复合板的组织与性能。结果表明,316L+Q370qD桥梁用不锈钢复合板的界面实现了完全冶金结合,未发现孔洞、裂纹等缺陷以及大颗粒的析出物及氧化物夹杂等;复合板的屈服强度为421~446MPa,伸长率为24.0%~28.0%,-20℃纵向冲击吸收能量平均值为200J,180°内、外弯曲合格,平均剪切强度为412 MPa,复合板的各项力学性能均满足GB/T 8165—2008《不锈钢复合钢板和钢带》标准要求。按照GB/T 4334—2008方法 E进行晶间腐蚀试验,复层不锈钢316L未出现晶间腐蚀现象,具有良好的耐晶间腐蚀性能。  相似文献   

15.
通过盐雾试验、电化学试验和FeCl3点腐蚀试验,并结合扫描电镜,对比研究了439超纯铁素体不锈钢和430普通铁素体不锈钢的耐腐蚀性能。结果表明,碳、氮间隙元素极低的439超纯铁素体不锈钢耐点蚀性能明显优于430普通铁素体不锈钢,虽然430钝化膜修复能力较强,但点腐蚀速率也较快;430不锈钢具有严重的晶间腐蚀敏感性,同样,430普通不锈钢在干湿加速盐雾试验中发生了严重腐蚀,439超纯铁素体不锈钢在上述腐蚀试验中均表现出轻微的腐蚀。可见在430普通不锈钢基础上降低碳、氮间隙元素含量,同时加入钛稳定化元素,使其耐腐蚀性能大幅提高。  相似文献   

16.
实验用022Cr24Ni17Mo5Mn6NbN超级奥氏体不锈钢(/%:0.028C,0.33Si,6.21 Mn,24.93Cr,17.03Ni,4.24Mo,0.45N)采用1 t非真空感应+电渣重熔的工艺冶炼,Φ360 mm电渣锭经锻造开坯后轧制为Φ40mm棒材研究了热轧态(终轧1 000℃,水冷)和经1 070~1 180℃固溶后钢的组织、点腐蚀性能和力学性能实验结果表明,随固溶温度的升高,该钢品粒逐渐长大,强度降低,塑性增加,耐点腐蚀性能得到改善。采用1 120℃进行固溶,该钢可以获得均匀的组织、优异的点腐蚀性能和良好的综合力学性能。  相似文献   

17.
Nitrogen-alloyed 316LN stainless steel is used as a structural material for high temperature fast breeder reactor components. With a view to increase the design life of the components up to 60 years and beyond, studies are being carried out to develop nitrogen alloyed 316LN stainless steel with superior tensile, creep and low cycle fatigue properties. This paper presents the results from studies on the influence of nitrogen on the high temperature creep properties of this material. The influence of nitrogen on the creep behaviour of 316LN stainless steel has been studied at nitrogen levels of 0.07, 0.11, 0.14 and 0.22 wt%. Creep tests were carried out at 923 K at stress levels 140, 175, 200 and 225 MPa. Creep rupture strength increased substantially with increase in nitrogen content. The variation of steady state creep rate with stress showed a power law relationship. The power law exponent varied between 6.4 and 13.7 depending upon the nitrogen content. Rupture ductility was generally above 40% at all the test conditions and for all the nitrogen contents. It was observed that the internal creep damage and surface damage decreased with increase in nitrogen content. Fracture mode was found to generally shift from intergranular failure to transgranular failure with increasing nitrogen content.  相似文献   

18.
借助Thermo-Calc热力学相图计算软件,开发了用于电梯的含氮节镍奥氏体不锈钢QN1701(12Cr17Mn7Ni2Cu2N),以代替443(019Cr21CuTi)超纯铁素体不锈钢。通过OM、SEM和电化学工作站等方法研究了QN1701和443不锈钢的组织及性能。N原子起着间隙固溶和细晶强化的作用,使QN1701不锈钢的屈服强度提高至400 MPa以上,达到443不锈钢的1.32倍。QN1701不锈钢的点蚀电位为241 mV,低于443不锈钢的289 mV,但其点蚀速率为9.10 g/(m2·h),低于443不锈钢的14.58 g/(m2·h)。在电梯用研磨拉丝表面状态下,QN1701不锈钢在质量分数为10%NaCl中性盐雾和干湿循环盐雾等加速腐蚀试验中的耐蚀性能均优于443不锈钢。分析发现,443不锈钢添加一定量的Nb、Ti稳定化元素所生成的(Nb,Ti)(C,N)析出相经研磨拉丝处理后,暴露于表面或被拖拽后留下微坑,导致其耐蚀能力急剧下降。综上所述,相较443不锈钢,QN1701不锈钢具有强度更高、伸长率更大和在研磨拉丝表面状态下耐蚀性更好等特点,这对于电梯轻量化设计和长寿命具有重要价值。  相似文献   

19.
赵定国  王书桓 《特殊钢》2012,33(5):15-18
根据对高氮不锈钢冶炼设备和工艺、氮气在高温高压下溶入钢液中的方式和特点,以及底吹增氮的优势的分析,在实验室通过300 g钢水底吹异型坩埚在0.5~1.5 MPa,氮气底吹流量0.14~0.24 m~3/h,1820~1910 K下对高氮不锈钢Cr18Mn18N(/%:0.17C、18.00Cr、18.09Mn、0.25Si、0.010S、0.020P、1.07N)进行增氮试验。结果表明,在1.5 MPa、1890 K,0.15 m~3/h底吹氮气流量下,当底吹时间20~30 min氮含量趋于饱和,可快速冶炼出氮含量≥1.0%高氮不锈钢,具有良好的工艺效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号