首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 625 毫秒
1.
本文基于三维弹性体非Hertz滚动接触理论、CONTACT程序和有限元法,针对LMa车轮踏面与CN60钢轨匹配问题,通过仿真分析不同轮径和轴重的车轮对轮轨蠕滑力、轮轨接触应力和轮轨滚动接触疲劳等的影响。结果表明,在相同轮对横移量和轮径条件下,轴重每增加1t,轮轨蠕滑力平均增加7%~8%,接触斑面积、接触压力和等效应力平均增加2%~3%;在相同轮对横移量和轴重条件下,轮轨接触斑面积随轮径增加而增加,轮轨接触压力、等效应力随轮径增加而降低,但变化幅度均较小。计算结果可为车辆轮径和轴重的选择提供参考依据。  相似文献   

2.
铁路钢轨打磨目标型面研究   总被引:3,自引:0,他引:3  
提出一种基于轮轨接触界面法向间隙的钢轨踏面设计方法,寻找了重载线路上较小轮轨接触应力水平的钢轨打磨目标型面,为新铺设钢轨预打磨及预防性打磨方案的设计提供理论依据。根据三维非赫兹滚动接触理论寻找了轨头的优化范围,在此范围内能保证轮对动态横移过程中,轮轨接触点附近最小法向间隙的钢轨轨头外形。针对重载线路轮轨伤损严重的问题,利用目前的方法对现有的60kg/m钢轨进行了优化设计。利用车辆-轨道耦合动力学理论及三维弹性体非赫兹滚动接触理论对优化前后钢轨踏面与原车轮接触时静态接触性能及动态接触性能进行了分析。结果表明,优化后轮轨界面之间具有较好的"共形"接触特性,在不降低车轮其他动力学性能的情况下,钢轨踏面优化后的轮轨接触应力显著地降低,并且使左右轮轨磨耗程度趋于均衡,可以有效降低轮轨磨耗与滚动接触疲劳。  相似文献   

3.
对某地铁线路轮轨磨耗进行测试,分析实测型面与CN60钢轨匹配的轮轨接触几何关系,并利用Kalker三维弹性体非赫兹滚动接触理论对轮轨接触力学特性进行分析。利用UM多体动力学软件建立某B型地铁车辆动力学仿真模型,分析轮轨磨耗对车辆动力学性能及轮轨接触损伤特性的影响。结果表明:该线路车轮踏面磨耗较均匀,存在明显轮缘磨耗现象。不同运行里程下实测车轮踏面外形基本相似,导致车轮磨耗对轮轨接触几何关系、轮轨接触力学特性及车辆动力学性能的影响较小。实测轮轨匹配下的动力学性能略有下降。随着运行里程增大磨耗指数变化不大,表明车轮磨耗稳定。车轮磨耗后表面疲劳指数大于标准型面,出现滚动接触疲劳的可能性增大。  相似文献   

4.
车轮扁疤是车轮踏面缺陷常见形式之一,会产生较大的轮轨冲击,影响列车运行的平稳性和安全性.该研究建立了三维轮轨滚动接触有限元模型,采用显式有限元法研究了车轮扁疤引起的轮轨冲击力学响应,描述了车轮扁疤冲击钢轨整个过程中轮轨接触状态的变化,着重分析了轮轨材料疲劳损伤与应变率效应对轮轨冲击响应的影响,并讨论了列车速度、扁疤长度...  相似文献   

5.
李霞  金学松  温泽峰  胡东 《工程力学》2011,(1):205-211,218
建立了车轮磨耗理论计算模型并发展了相应的数值程序,模型中包含了车辆轨道耦合动力学模型、轮轨滚动接触理论和材料摩擦磨损模型.根据该理论模型提出了两种磨耗叠加方法计算车轮轮周磨耗量,即简化方法和改进方法,探讨了它们对车轮型面磨耗及其演化规律的影响.简化方法假定车轮滚过一个接触斑长度时,接触斑信息不变,因而只计算一个步长即可...  相似文献   

6.
车轮多边形对轮轨静态匹配的影响   总被引:1,自引:0,他引:1  
摘 要:为了分析车轮多边形对轮轨静态匹配的影响,设定车轮半径在圆周上具有周期性变化,并且考虑车轮横向磨耗的改变,建立多边形车轮空间模型。由于迹线法不适用于多边形车轮,本文在空间车轮模型上搜索与钢轨距离最小点,得到轮轨接触位置和几何参数。采用Hertz接触理论和Polach蠕滑力模型计算轮轨法向应力和蠕滑力,分析多边形车轮对轮轨接触静力学的影响。计算结果显示:多边形车轮的横向磨耗对轮轨静态匹配影响比较微弱,周向磨耗会引起轮轨接触斑和法向应力的周期性变化,影响程度随阶次的增加而增强。  相似文献   

7.
为了分析车轮多边形对轮轨静态匹配的影响,设定车轮半径在圆周上具有周期性变化,并且考虑车轮横向磨耗的改变,建立多边形车轮空间模型。由于迹线法不适用于多边形车轮,在空间车轮模型上搜索与钢轨距离最小点,得到轮轨接触位置和几何参数。采用Hertz接触理论和Polach蠕滑力模型计算轮轨法向应力和蠕滑力,分析多边形车轮对轮轨接触静力学的影响。计算结果显示:考虑横向磨耗时,多边形车轮的相位对轮轨静态匹配影响比较微弱,周向磨耗会引起轮轨接触斑和法向应力的周期性变化,影响程度随阶次的增加而增强。  相似文献   

8.
赵腾  张军  孙传喜 《工程力学》2012,29(10):308-312
针对机车运行中出现轮缘磨耗严重这一问题, 统计苏家屯机务段电力机车轮对检修记录, 将轮缘磨耗过程可以分为3 个阶段:初期磨耗阶段、磨耗稳定阶段和后期磨耗阶段。建立不同磨耗时期的轮轨弹塑性接触模型, 运用有限元方法进行计算分析。计算结果表明:车轮轮缘厚度从32mm磨耗到27mm这个过程, 轮缘上的接触等效应力相对较小, 轮缘磨耗速度在整个磨耗过程中最低;机车车轮镟修或换轮后在磨耗后线路上运行, 标准车轮与磨耗钢轨的型面匹配状况不佳, 接触等效应力集中在车轮轮缘上, 运行初期轮缘磨耗较快。得出的结论有助于设计出更好的轮轨型面来降低轮缘磨耗。  相似文献   

9.
王大奎  张军  王春艳  郭璇 《工程力学》2013,30(2):354-359
针对动车组、机车车轮与高速道岔的磨耗问题,测量运行线路上磨耗后的车轮与道岔的实际几何尺寸,应用有限元方法求解车轮与道岔长短心轨的接触问题。计算了车轮与高速道岔的长短心轨部分在不同位置的接触状态,分析得出了不同工况下车轮与心轨接触斑、等效应力以及接触法向力的分布和变化规律,为道岔结构的合理设计和型面尺寸的优化提供了一定的理论依据。结果表明:JM3型机车车轮与18号高速道岔的心轨型面匹配不合理;动车组和机车车轮与心轨间的最大应力值都超过了轮轨材料的屈服极限,发生塑性变形;车轮在钢轨上的横移量影响轮岔之间的磨耗,向心轨外侧的横移量越大,磨耗越严重。  相似文献   

10.
重载货车在实际的生产及服役条件下,轮轨之间的相互作用不仅受各种轨道不平顺激励的影响,也会受到车轮状态变化的激励作用。从车轮运行状态的角度研究重载货车轮轨间相互作用,分别以车轮磨耗前后踏面形状、车轮多边形化、车轮质量偏心和轮对结构变形四种车轮运行状态来模拟分析车轮各状态参数与轮轨垂向作用力的关系,并总结其影响规律。研究表明:车轮踏面形状主要影响轮轨接触斑面积以及接触应力分布,磨耗后车轮比新轮的接触应力分布范围更广泛;在不同速度下,车轮多边形化的波深、相位差及谐波阶数对轮轨垂向力产生不同程度的影响;车轮质量偏心对轮轨产生周期性垂向冲击,但振动幅度并不大;轮对挠度的动态变化对轮轨动态接触载荷影响比较显著,尤其是轮对结构弯曲振动加剧了轮轨垂向动作用力。  相似文献   

11.
两种型面轮轨滚动接触蠕滑率/力的比较   总被引:5,自引:0,他引:5  
本文从数值方面详细分析了两种型面轮对和轨道在滚动接触过程的接触几何、蠕滑率和蠕滑力。在利用Kalker三维弹性体非赫兹滚动接触理论进行轮轨蠕滑力分析时,首先利用有限元方法确定了因轮轨的弹性变形而引起轮轨接触点处的弹性位移差。并利用弹性位移差修正Kalker理论中由Boussinesq和Cerruti公式确定的力和位移的影响系数,使本文的数值过程能考虑到轮轨结构变形对轮轨接触斑的影响。通过计算分析可知,在轮对运动状态相同的情况下,磨耗型轮对和轨道之间的力学行为与锥型轮对和轨道之间的力学行为相比,存在较大差异。数值结果有助于进一步分析轮轨之间的磨耗、滚动接触疲劳和轮轨使用寿命,为采取相应措施提供理论依据。同时发现目前我国铁路所采用的1/40轨底坡与目前正在全面推广使用的磨耗型轮对不是处于最佳匹配状态,有待进一步改进。  相似文献   

12.
Accurate prediction of fatigue crack growth on railway wheels and the influence of residual stresses by finite element method (FEM) modeling can affect the maintenance planning. Therefore, investigation of rolling contact fatigue and its effect on rolling members life seem necessary. The objective of this paper is to provide a prediction of rolling contact fatigue crack growth in the rail wheel under the influence of stress field from mechanical loads and heat treatment process of a railway wheel. A 3D nonlinear stress analysis model has been applied to estimate stress fields of the railway mono-block wheel in heat treatment process. Finite element analysis model is presented applying the elastic–plastic finite element analysis for the rail wheel under variable thermal loads. The stress history is then used to calculate stress intensity factors (SIFs) and fatigue life of railway wheel. The effect of several parameters, vertical loads, initial crack length and friction coefficient between the wheel and rail, on the fatigue life in railway wheels is investigated using the suggested 3-D finite element model. Three-dimensional finite element analysis results obtained show good agreement with those achieved in field measurements.  相似文献   

13.
根据线路实际测量的高速车辆车轮踏面外形,分析了不同磨耗里程下的S1002G踏面的轮轨接触几何关系的变化规律。研究结果表明S1002G踏面随着运营里程的增加,等效锥度逐渐增大,特别是在轮对横移量2mm以内表现最明显。随着轮对横移量的增加等效锥度呈现先减小后增大的变化趋势,这说明S1002G踏面在京沪线实际运营过程中以凹形磨耗为主。通过建立高速动车组单车动力学模型,采用磨耗前后的轮轨型面,分析了三种不同类型转向架车辆模型的运动稳定性。分析结果表明磨耗导致轮轨匹配关系发生变化从而大大降低了车辆的临界速度;而一系纵向定位刚度无论是磨耗前还是磨耗后都会对车辆稳定性造成重要的影响,相对来说柔性转向架更有利于车辆的运动稳定性。轨道参数对轮轨接触几何关系有着非常重要的影响,因此研究车辆稳定性问题必须要考虑轨道几何参数的作用。  相似文献   

14.
Fatigue failure of a high manganese steel crossing is related to its internal crack initiation and growth, which is affected significantly by the magnitude and distribution pattern of contact stress and residual stress in the crossing. Considering the actual service conditions of a crossing and the accuracy requirement for numerical calculation, a whole model of wheel/crossing/ties and a partial model of wheel/crossing are established using elastic‐plastic finite element method. The distributions of contact stress fields and residual stress fields due to wheel contact loading are studied. The effect of train speed on the residual stress in the nose rail is discussed. The contact stress field shows regular contours in the cross‐section of nose rail and decreases remarkably with increasing distance of the wheel‐crossing contact position. The maximum contact stress is located at the contact surface between wheel and crossing. The maximum residual stress is located at a position of 1.5‐2.0 mm below the surface of the nose rail, rather than at the contact surface of wheel and crossing. In a failed high manganese steel crossing, the dense cracks mainly were observed neither at the position of maximum contact stress (the contact surface between the wheel and the crossing), nor at the position of maximum residual stress (1.5‐2.0 mm below the surface of the nose rail), but around the depth of 0.8‐1.0 mm from the worn surface, which is between the position of maximum contact stress and the position of maximum residual stress. It indicates that the combined effects of the maximum contact stress and the maximum residual stress play important roles in fatigue crack initiation in the nose rail. The size of high residual stress region increases with the increase of the train speed. The maximum residual stress in the nose rail increases remarkably with the increase of the train speed.  相似文献   

15.
One of the most important issues in railway wheels is residual stresses. It is desirable to produce less residual stresses when possible and to decrease the remaining residual stresses in the wheels. The objective of this paper is to provide an estimation of the residual stresses in the rail wheel caused by the stress field from heat treatment process of a railway wheel. A three-dimensional nonlinear stress analysis model has been applied to estimate stress fields of the railway mono-block wheel in heat treatment process. After forging or casting, railway wheels are heat-treated to induce the desirable circumferential compressive residual stress in the upper rim. Finite element analysis model is presented applying the elastic–plastic finite element analysis for the rail wheel under variable thermal loads. Calculative analysis applying a finite element method (FEM) has been used to predict residual stresses. The quenching and annealing segments of the wheel manufacturing process are simulated using a decoupled heat transfer and stress analysis. Three-dimensional finite element analysis results obtained show good agreement with those achieved in field measurements.  相似文献   

16.
Nannan Zong 《工程优选》2013,45(9):1043-1060
The railhead is severely stressed under the localized wheel contact patch close to the gaps in insulated rail joints. A modified railhead profile in the vicinity of the gapped joint, through a shape optimization model based on a coupled genetic algorithm and finite element method, effectively alters the contact zone and reduces the railhead edge stress concentration significantly. Two optimization methods, a grid search method and a genetic algorithm, were employed for this optimization problem. The optimal results from these two methods are discussed and, in particular, their suitability for the rail end stress minimization problem is studied. Through several numerical examples, the optimal profile is shown to be unaffected by either the magnitude or the contact position of the loaded wheel. The numerical results are validated through a large-scale experimental study.  相似文献   

17.
A finite element analysis is conducted to study dynamic elastic–plastic stress when a wheel passes a rail joint with height difference between the two sides of a gap. The ANSYS implicit code and LS-DYNA explicit code are coupled to simulate the process of the wheel contacting or impacting the rail joint. Contact elements are used to simulate the interactions between wheel and rails, between rails and joint bars, between joint bars and bolts and between bolts and rails. The effects of train speed, axle load and height difference on the contact forces, stresses and strains at railhead are investigated. Numerical results show that the presence of rail joint with height difference significantly affect the contact force, stress and strains. The results also indicate that the train speed has a larger effect on the contact force, stress and strains than the axle load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号