首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve understanding of how aluminum contributes in non‐ideal explosive mixtures, cast‐cured formulations have been analyzed in a series of cylinder tests and plate‐pushing experiments. This study describes the contribution of 15 % aluminum (median size of 3.2 μm) vs. lithium fluoride (an inert substitute for aluminum; <5 μm) in cast‐cured HMX formulations in different temporal regimes. Small cylinder tests were performed to analyze the detonation and wall velocities (1–20 μs) for these formulations. Near‐field blast effects of 58 mm diameter spherical charges were measured at 152 mm and 254 mm using steel plate acceleration. Pressure measurements at 1.52 m gave information about free‐field pressure at several milliseconds. While the observed detonation velocities for all formulations were within uncertainty, significantly higher cylinder wall velocities, plate velocities, and pressures were observed for the aluminum formulations at ≥2 μs. Additionally, hydrocode calculations were performed to determine how non‐ideal behavior affected the plate test results. Collectively, this work gives a clearer picture of how aluminum contributes to detonation on timescales from 1 μs to about 2 ms, and how the post‐detonation energy release contributes to wall velocities and blast effects. The experiments indicate that significant aluminum reactions occur after the CJ plane, and continue to contribute to expansion at late times.  相似文献   

2.
The important role of the shape of the front during detonation wave propagation in gas mixtures was substantiated by K. I. Shchelkin during construction of the theory of spinning detonation. Subsequently, a unique relationship between the curvature of the front and detonation wave parameters has been repeatedly confirmed in experiments, including for condensed high explosives (HEs). The existence of this relationship formed the basis of the theory of the dynamics of the detonation front which had been developed by the end of the 20th century. This paper presents the results of a study of detonation front propagation in cylindrical samples of a low-sensitivity HE of different diameters with one-point and plane-wave initiation. A unique relationship between the detonation velocity and the curvature of the detonation wave front has been found. Ordinary differential equations describing two-dimensional steady-state detonation front profiles for HE charges in the form of a plate, a cylinder, and a ring were derived assuming that the detonation velocity depends on the curvature of the front. It was taken into account that the boundary angle between the normal to the front and the HE edge is unique for each combination of HE and liner material. It was found that the same detonation front profile corresponds to several combinations of liner material and the determining size of the charge (plate thickness, radius of the cylinder or the inner radius of the ring). A comparison of experimental front profiles near the edges of HE charges for these combinations provides data on the dependence of detonation velocity on the curvature of the front at low velocities corresponding to shock-induced detonation regimes. Analysis of previously obtained data for detonating ring charges of low-sensitivity HEs shows that as the detonation velocity decreases, the total front curvature tends to a limit of about 0.05 mm−1, i.e., of the order of the inverse critical diameter. The limit of the front curvature allows predicting the critical detonation diameter.  相似文献   

3.
The detonation velocity and performance were determined for four mixtures of triacetone triperoxide (3,3,6,6,9,9‐hexamethyl‐1,2,4,5,7,8‐hexoxonane, TATP), ammonium nitrate (AN) and water (W) by cylinder expansion tests. The composition of these mixtures varied in the following ranges: 21–31% TATP, 37–54% AN and 19–32% W. The obtained results were compared with those of powdery 2,4,6‐trinitrotoluene (TNT), AN‐fuel oil explosive (ANFO) and emulsion explosive. It was found that the tested TATP/AN/W mixtures represent typical non‐ideal explosives with relatively low critical diameter and with high sensitivity to initiation despite the high content of water due to the presence of the primary explosive (TATP). The detonation velocity is comparable to that of powdery TNT (at similar density). However, the acceleration ability is significantly lower than that of powdery TNT.  相似文献   

4.
Explosive characteristics of aluminized HMX-based nanocomposites   总被引:1,自引:0,他引:1  
The explosive characteristics of HMX compositions doped with 15% Al (by weight) were studied experimentally. The detonation velocity, pressure and temperature profiles, the velocity of endwise acceleration of plates, and the heat of explosion of dense pressed samples were measured. The results were compared for compositions based on mechanical mixtures of initial micron-size particles of HMX with aluminum powders of various sizes and for nanocomposites. The addition of nanoaluminum reduces the detonation velocity to a greater degree than the addition of micron-size aluminum. The mechanical mixtures have close detonation velocities, whereas in composites containing different types of nanoaluminum, they differ by almost 200 m/sec. For all compositions, except for the most homogeneous nanocomposite, two-peak pressure profiles are observed. For charges of a composite and a mechanical mixture with nanoaluminum of the same type, the second peak pressures almost coincide but are reached in different times. At the same time, the peak pressure increases with decreasing aluminum particle size. The temperature profiles agree qualitatively with the pressure profiles. The velocity of endwise acceleration of plates depends linearly on the activity of the aluminum powder used. Nanocomposites and mechanical mixtures containing the same aluminum powder have close heats of explosion. Nanoaluminum is almost completely oxidized during calorimeter bomb tests, and the major factor determining the heat of explosion of the compositions with nanoaluminum is also the content of active metal in the aluminum powder. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 2, pp. 85–100, March–April, 2008.  相似文献   

5.
Investigation of detonation parameters, blast wave characteristics and quasi‐static pressures (QSPs) for the mixtures of nitromethane and particles of an aluminium and magnesium (Al3Mg4) alloy was carried out. The mixtures of gelled nitromethane containing 15–60 wt.‐% Al Mg alloy were tested. Detonation velocity and Gurney energy were determined. Parameters of blast waves produced by charges of the investigated explosives were measured. QSP measurements were conducted in a steel chamber of 0.15 m3 volume filled with air. Thermochemical and gasdynamical calculations were also performed. The degree of combustion of the metallic addition with the gaseous products during detonation and expansion is discussed.  相似文献   

6.
The detonation properties of mechanically activated mixtures of ammonium perchlorate and aluminum were studied. The deflagration-to-detonation transition for low-density charges was investigated. Dependences of the detonation velocity of pressed charges with different types of aluminum on the activation time, density, and diameter of the charges were obtained. For compositions with nanosized aluminum, it is was found that the detonation velocity depends nonmonotonically on the inverse charge diameter and remains almost unchanged in a certain range of charge diameters. It is shown that the joint use of mechanical activation and nanosized components of the composite explosive significantly increases the detonability, reduces the critical diameter, and shifts the maximum of the detonation velocity as a function of density to higher charge densities.  相似文献   

7.
Small‐scale detonation experiments were conducted in a controlled atmosphere chamber to investigate the post‐detonation reactivity of a fuel‐rich, plastic bonded explosive. The atmosphere surrounding these 20 g explosive charges was varied in oxygen content from 0.2 to 100% with the total pressure held constant at 101 kPa. The performance of this small‐scale explosive charge is sensitive to the changing atmospheric conditions, perhaps more so than a larger charge size, due to burning inefficiencies corresponding to a scaling effect (increased surface area to volume ratio). Time‐resolved optical emission spectroscopy was used to contrast the dependence of the post‐detonation combustion properties on external oxygen content. The dominant near‐ultraviolet and visible emission features evolve from aluminum (Al) and aluminum monoxide (AlO) when oxygen is present. The time evolution of AlO emission was used to estimate the aluminum particle burning times, which lengthen from 6 to 31 μs as the oxygen content is reduced from 100 to 1%. The absence of AlO spectral features below 1% oxygen levels imply that the emission spectroscopy applied to this detonation environment is most sensitive to the aerobic component of the post‐detonation combustion. Pressure and optical pyrometry measurements recorded during the same experiments exhibit the strong dependence of the early time energy release on the oxygen content in the surrounding atmosphere. Numerical simulations of the detonation and subsequent multiphase flow expansion predict the position of the fuel particles to extend beyond the detonation products and, in some cases, beyond the shock front during the timescales covered in these experiments, stressing the importance of mixing with ambient oxygen for early combustion to occur.  相似文献   

8.
Aluminum nanopowders, because of their larger surface area, can increase the burning rate of propellants. It has been suggested that the powders could also enhance the detonation properties of certain explosives. For these reasons, an experimental study was undertaken to compare the performance of nanometric and micrometric aluminum in various explosives. No enhancement of performance was found in plastic‐bonded explosives. In fact, a reduction of the detonation velocity was found in plastic‐bonded explosives that are based on an energetic binder system. No increase of the detonation velocity was found in mixtures of aluminum and either Composition B or Ammonium Nitrate Fuel Oil, but a small increase in the heat of detonation was measured. The mixture of TNT and nano‐aluminum demonstrated higher detonation velocities and heats of detonation. The increase was higher at small charge diameters. Nanometric aluminum was shown to reduce the critical diameter of such mixtures, and it is concluded that the nano‐aluminum reacts faster than regular micron‐size particles in TNT/Al compositions.  相似文献   

9.
A model of the effective characteristics of heterogeneous systems is given. The model is based on the methods of field theory of many bodies. The suitability of the given approach for a quantitative assessment of the characteristics of explosives and detonation is shown. In particular, two‐component mixtures of TNT/RDX and three‐component mixtures of aluminum with energetic materials are considered. The values of a few parameters (density, impact sensitivity, heat of explosion, detonation velocity) calculated by means of the proposed model agree satisfactorily with known experimental data.  相似文献   

10.
A study has examined the effect of mixing methods on the thermal stability and detonation characteristics of ammonium nitrate (AN) and sodium chloride (NaCl) mixtures. NaCl was mixed with AN by two methods. The thermal stability, detonation velocity and structural properties were investigated by differential scanning calorimetry (DSC), measurement of detonation velocity and X‐ray diffraction (XRD). For the mechanical mixing method, in all tested scope of proportions of NaCl in the mixtures, activation energies increase when the proportion of NaCl increases; for solution mixing method, the activation energies decrease first and then start to increase as the proportion of NaCl increases. The detonation velocity of AN‐NaCl mixtures prepared by two mixing methods also showed different results. The results indicate that the mixing methods significantly affect the thermal stability and detonation characteristics of AN.  相似文献   

11.
1,1‐Diamino‐2,2‐dinitroethene (DADNE, FOX‐7) is considered to be an explosive combining comparatively high performance and low sensitivity. In the present study, FOX‐7 has been evaluated as a possible replacement of RDX in TNT‐based melt‐cast compositions. A composition containing FOX‐7, TNT, Al and wax, and a method of preparing it were proposed. Its sensitivity to impact, friction, shock wave, jet impact, fast heating, and its thermal stability were tested. Some detonation parameters like the detonation pressure, velocity and heat were measured. Moreover, the Gurney velocity, the so‐called effective exponent of the expansion isentrope and the JWL equation of state of the detonation products were determined from the results of a cylinder test. The detonation characteristics were compared with that obtained for cast TNT.  相似文献   

12.
To improve the understanding how aluminum contributes in non‐ideal explosive mixtures, cast‐cured formulations were analyzed in a series of electrical conductivity experiments. Five types of TNT‐based aluminized explosives, with aluminum mass fractions from 0 % to 20 % were considered in this study. The electrical conductivity of the detonation products in aluminized explosives was measured using an improved conductivity measurement method. The conductivity measurement results show that the detonation process of TNT‐based aluminized explosives can be divided into two stages: the first stage is the detonation reaction of TNT, and the second stage is the combustion reaction of aluminum with the detonation products. In the first stage, the duration of the TNT detonation increases with increased aluminum content; examination of the peak conductivities of the explosives with various aluminum contents indicated that a higher aluminum content is associated with a lower peak conductivity. Additionally, the ignition time of Al in the second stage is also determined. This work not only presents a means for studying the detonation process of aluminized explosives at 0–2.21 μs, but it also verified the relationship between the aluminum content and electrical conductivity in detonation products.  相似文献   

13.
The factors influencing initiation of detonation in gap tests for liquid explosives are investigated experimentally. A calibrated donor charge (nitromethane) and PMMA attenuator disk arrangement are used to transmit shocks of known strength (2–10 GPa) into a test explosive of nitromethane sensitized with 5% diethylenetriamine. The test explosive is contained in capsules of different wall materials (PVC, Teflon, aluminum), and the dimensions of the charges vary from 25 mm to 100 mm in diameter. For the small‐scale charges, the presence of the confining wall of the test capsule is seen to have a pronounced effect on the detonation initiation. Certain wall materials (PVC, Teflon) exhibit a multi‐valued critical gap thickness, meaning that a weaker shock may result in initiation while a stronger shock does not. The effect of the wall materials could not be correlated with their acoustic or shock impedance, and the only way to eliminate these effects was to make the diameter of the test charge larger than the donor charge. When the size of the donor charge was increased, the critical pressure required for initiation decreased. These results could be correlated to “ideal” shock initiation experiments that use flyer plates as shock sources assuming that lateral rarefactions quench detonation initiation if they reach the central axis of the charge before the onset of detonation is complete.  相似文献   

14.
Prilled ammonium nitrate (AN) is manufactured globally in millions of tons and is mainly used as fertilizer or as the main ingredient of modern mining blasting explosives. The availability of AN poses a serious threat to public security as it enables preparation of massive explosive charges using a simple technology in order to carry out terrorist attacks. This paper examines the option of using agriculture AN manufactured in several Polish plants as the basic ingredient of explosive mixtures with liquid fuels or powdered aluminum. Fuel oil (FO), 2‐EHN and nitromethane were used as liquid fuels. Additionally, the effect of an inorganic additive (dolomite) in AN on the detonation velocity of mixtures of granulated and milled AN with various fuels was examined.  相似文献   

15.
DNTF基熔铸炸药的金属加速作功能力   总被引:1,自引:0,他引:1  
用圆筒试验获得含铝和不含铝两种配方的DNTF基熔铸炸药的筒壁膨胀速度、比动能和格尼系数的变化规律,研究了其金属加速作功能力,并与Octol炸药进行了对比。结果表明,DNTF可显著提高混合炸药的金属加速作功能力;加入少量铝粉虽然会降低初始筒壁速度,但在圆筒膨胀后期,筒壁速度可超过不含铝配方,且提高了DNTF基熔铸炸药的持续金属加速作功能力;与Octol炸药相比,含铝DNTF基熔铸炸药的格尼系数提高了6.2%。  相似文献   

16.
It is crucial in the development of a new explosive to obtain an evaluation of performance early in the process when the availability of material is limited. Evaluation requires dynamic measurements of detonation velocity, pressure, and expansion energy – typically in separate experiments that require large amounts of material, time, and expense. There is also a need for evaluation of the total available thermodynamic energy. The dynamic evaluations, in particular, have been a major hindrance to development of new explosives. The new experimental testing method to be described here requires small charges and obtains accurate measurement of all three of the detonation performance characteristics in a single test. The design, a Disc Acceleration eXperiment (DAX), provides an initial condition of steady detonation and a charge‐geometry amenable to 2D hydrodynamic simulations. The velocity history of a metal disk attached to the end of the explosive charge is measured with Photonic Doppler Velocimetry (PDV). This disc velocity data is analyzed to give both CJ pressure and expansion energy. The detonation velocity is obtained with probes along the charge length. The experiments and subsequent analyses are concentrated on LX‐16, a known PETN based explosive, for the purpose of establishing the accuracy of the method and to provide a standard for comparison with other explosives. We present details of the experimental design and also detonation velocity and PDV results from a number of experiments. The total available internal energy for the explosive was obtained from published detonation calorimetry measurements by Ornellas [1], and from thermodynamic equilibrium calculations. An equation‐of‐state (EOS) for LX‐16 was derived from hydrodynamic simulations of thin plate‐push velocity‐time data. We will show a successful comparison with a previously published Jones‐Wilkins‐Lee (JWL) EOS for PETN by Green and Lee [2–4].  相似文献   

17.
The dependences of the detonation velocity and the propellant performance measured using the M-40 technique on the charge density for aluminized explosives with different mass fraction of Al were studied. The fractions of the energy of Al combustion utilized during the chemical reactions and during the acceleration of the flyer plate were estimated. Regression dependences of the detonation velocity and the propellant performance on the charge density were obtained. The effect of the addition of particulate Al, Ti, Zr, and W in an amount of 5–30% on the detonation velocity of high-density explosive charges based on plasticized RDX was investigated. It is found that the reduction in the detonation velocity with the addition of various metallic additives is determined by the longitudinal sound velocity of the additive, and not by its density. Simple formulas for calculating the detonation parameters of high-density metallized explosives were obtained.  相似文献   

18.
FOX-7和RDX基含铝炸药的冲击起爆特性   总被引:1,自引:0,他引:1  
为研究FOX-7和RDX基含铝炸药的冲击起爆特性,对其进行了冲击波感度试验和冲击起爆试验,结合冲击波在铝隔板中的衰减特性,确定了FOX-7和RDX基含铝炸药的临界隔板值和临界起爆压力,并通过锰铜压阻传感器记录了起爆至稳定爆轰过程压力历程的变化。结果表明,以Φ40mm×50mm的JH-14为主发装药时,FOX-7和RDX基含铝炸药临界隔板值分别为37.51和34.51mm,对应的临界起爆压力为10.91和11.94GPa;起爆压力为11.58GPa时,FOX-7炸药的到爆轰距离为25.49~30.46mm,稳定爆轰后的爆轰压力为27.68GPa,爆轰速度为8 063m/s;起爆压力为14.18GPa时,RDX基含铝炸药的到爆轰距离为17.27~23.53mm,稳定爆轰后的爆轰压力为17.16GPa,爆轰速度为6 261m/s。  相似文献   

19.
The sensitivity and performance of mixtures of HMX (octogen) and BTNNA (bis(2,2,2‐trinitroethyl)nitramine) with 10–20% of ultrafine aluminum, ALEX, and other types of aluminum are studied. While the addition of aluminum results in only a small reduction of the detonation velocity, it decreases the Gurney energy of HMX much more than that of BTNNA, which is attributed to its positive oxygen balance. Formulations based on HMX and BTNNA reach top values of the Gurney velocity surpassing 3.0 mm/μs.  相似文献   

20.
In an effort to improve the insensitive munition (IM) response but maintain performance of aluminized formulations, silicon was investigated as a possible replacement for aluminum. An RDX‐based silicon explosive was developed in which nearly 90 % reaction of silicon to silicon dioxide was realized by 7 volume expansions as measured by the 2.54 cm diameter copper cylinder expansion test. In spite of the low nitramine loading in the formulation (79 wt.‐%), the corresponding Gurney constant for the explosive was 2.81±0.02 km s−1, which is superior to Composition A‐3 under the same experimental conditions (91 % RDX, 2.69±0.02 km s−1). Energy calculations from detonation calorimetry also indicate reaction of the silicon, which was further confirmed by both silicon metal and silicon dioxide in the analyzed residue. The energy release, despite it being equivalent to a highly loaded explosive, was found to lag behind the rate of A‐3. This indicates silicon oxidation may occur sometime after lighter gas reactions in the reaction front, but is fast enough to impart work in the copper cylinder test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号