首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
限制接触刀具切削与刀—屑接触长度关系的研究   总被引:1,自引:0,他引:1  
通过切削试验,研究了限制接触刀具前刀面的刀一屑接触长度逐渐减小时切削力的变化规律。试验结果表明:当刀具前刀面刀-屑接触长度减小时,前刀面上的法向力Fn和切向力Ff呈非线性减小,且Ff-l曲线存在两个拐点,根据这两个拐点可间接测量前刀面的刀-屑接触长度L和紧密型接触长度lfl。  相似文献   

2.
通过切削试验 ,研究了限制接触刀具前刀面的刀—屑接触长度逐渐减小时切削力的变化规律。试验结果表明 :当刀具前刀面刀—屑接触长度减小时 ,前刀面上的法向力Fn 和切向力Ff 呈非线性减小 ,且Ff-l曲线存在两个拐点 ,根据这两个拐点可间接测量前刀面的刀—屑接触长度L和紧密型接触长度lf1。  相似文献   

3.
正分屑原理是通过把切削刃分成多层多段或运用多刃组合把切削区分成多层多段,改变刀具刃形,使切削加工的切屑宽度小、厚度增大、减小切屑变形及切削力,从而改善整个切削状况。这种技术可用于改进各种不同的切削刀具,如阶梯刃车刀、波刃或错齿分布刃的铣刀、切削锥或跳牙丝锥、分屑或错齿切削的钻头以及轮切式拉刀等。1车刀改进在车削加工中,加工表面质量通常随着切削深度的增加而降低,为达到其要求,不得不减小切削深  相似文献   

4.
高强度钢15Cr14Co12Mo5Ni2WA的切削特性表现为切削力大,造成刀具磨损快与崩刃严重、加工精度保持性差。针对上述问题,提出将富勒烯C60纳米粒子混合切削液作用于金属切削过程中的刀-屑接触区(Ⅱ变形区)和刀-工接触区(Ⅲ变形区),以改善切削性能。为此,基于修正库仑摩擦、赫兹接触等理论方法建立了C60纳米粒子在刀-屑接触中的减摩润滑预测模型,研究预测了切削接触界面间产生的“纳米滚动轴承”效应及减摩特性,通过摩擦磨损试验测定了不同浓度C60纳米切削液下的摩擦特性变化,采用超景深3D显微镜、SEM、拉曼光谱仪等先进测量手段表征分析了试样表面磨痕微观形貌、研究了摩擦磨损机理。切削试验结果表明C60纳米切削液具有很好的减摩效果,有效地降低了切削力、工艺系统振动、刀具磨损,切削性能显著提升。应用在插削加工过程中,表现出切削冲击振动导致的刀具崩刃现象明显减少、因冷焊撕裂造成的前刀面局部剥落现象消失,刀具使用寿命延长。  相似文献   

5.
在负前角刀具正交切削加工过程中,为了得到更好的表面质量和力学性能,对加工负前角为-80°~0°的正交切削过程进行有限元仿真分析,研究了负前角刀具加工中材料的力学性能变化和滞留现象。仿真结果表明:随着加工负前角绝对值的增大,剪切角迅速减小,剪切应变逐渐增大,刀—屑的接触长度增长,主剪切区域水平分布拉长,导致产生的切屑和滞流区趋于扁平化;随着加工负前角绝对值的增大,前刀面上的平均摩擦系数呈现先减小后反向增大的特点,刀尖点处的最大正压力迅速增大,垂直方向切削力分量迅速增大,切削作用逐渐遭到削弱,刀尖点处的犁、压作用逐渐占据主导地位。  相似文献   

6.
采用ABAQUS有限元分析软件进行切削分析试验,研究刀具断屑槽磨损对切屑成型的影响。模拟了两种槽型的带断屑槽刀具在相同磨损参数和切削条件下的切削应力,并比较了不同槽型在相同磨损程度下对切屑成型的影响。试验结果表明:断屑槽磨损会增大刀—屑接触长度和切屑的卷曲半径,并且会引起切削应力的波动;梯形断屑槽刀具相比于弧形断屑槽刀具更适合加工。  相似文献   

7.
刀—屑界面的剧烈摩擦和高温会导致刀具快速磨损和加工效率低下。微织构作为用于刀具表面改善刀—屑界面特性和提高金属切削性能的一种方法,经证明效果明显。目前,关于微织构对刀—屑界面特性的影响机理及量化关系的研究较少,刀具微织构技术发展缓慢。本文利用激光打标机在刀具表面加工出不同参数的微织构,通过金属切削试验和理论模型解析,得到微织构刀具对刀—屑界面摩擦特性、刀—屑接触长度和刀—屑界面应力场等的影响关系。研究结果表明:刀具表面微织构降低了刀—屑界面的摩擦系数,减小了刀—屑接触和粘结区长度,改变了切削刃处的正应力和刀具表面应力场,为刀具表面微织构的研究和设计提供理论参考。  相似文献   

8.
刀-屑界面滑移区的接触及微通道分布特性直接影响切削液的渗入和刀-屑界面摩擦,对金属切削过程有着重要的影响,针对滑移区接触及微通道分布特性测量难、切削液在刀-屑界面渗入不易量化等问题,建立微织构粗糙刀-屑界面滑移区的接触数值模型,分析滑移区的接触、微通道分布特性以及微织构作用机制。研究表明:滑移区存在3种不同的宏观接触特性,分别为近黏结特性、微通道特性和近分离特性;在近黏结特性区内,刀-屑界面不存在微通道,微织构主要功能为减少刀-屑界面接触面积;在微通道特性区内,刀-屑界面存在大量微通道,微织构主要功能为连接微通道;在近分离特性区内,刀-屑界面微通道消失,微织构主要功能为存储切削液。刀-屑界面应力分布系数对各特性区长度有影响,应力分布系数减小,近黏结区和微通道区长度增大,而近分离区长度相应减小。  相似文献   

9.
采用UG NX11.0软件建立了三种不同卷屑角的容屑槽,以锥面刃磨的方式构建钻尖三维模型。测量主切削刃的法向前角并绘制法向前角的分布曲线,分析三种曲线之间的关系。利用AdvantEdge有限元仿真软件模拟钻削过程中的切削力、切削形貌、切削温度和应力分布,并通过切削试验验证了有限元模拟的可靠性。结果表明:容屑槽卷曲角直接影响主切削刃法向刀具前角的分布,且主切削刃的法向刀具前角越大,切削越锋利,切削力越小;在一定范围内,随着容屑槽卷曲角α增大,轴向切削力减小,且切屑卷曲直径也越小,有利于排屑和提高刀具寿命。  相似文献   

10.
采用原子沉积法(Atomic Layer Deposition,ALD)分别在点状微织构和条状微织构YT5硬质合金刀具(微织构刀具)上制备了纳米Al_2O_3涂层,通过直角切削实验研究了纳米Al_2O_3涂层对微织构刀具刀-屑界面间摩擦系数的影响,并将纳米Al_2O_3涂层微织构刀具与微织构刀具、YT5硬质合金刀具进行对比。结果表明,微织构能降低刀具刀-屑界面间的摩擦系数;纳米Al_2O_3涂层能进一步降低微织构刀具刀-屑界面间的摩擦系数,其中厚度为100 nm的Al_2O_3涂层微织构刀具刀-屑界面间的摩擦系数最小,当点状微织构间距为0.15 mm时摩擦系数值最优,当条状微织构方向垂直于主切削刃时摩擦系数值最优;刀具刀-屑界面间的摩擦系数随着切削速度的增加而增大。纳米Al_2O_3涂层与微织构相结合将刀-屑界面间的摩擦由滑动摩擦转变为滑动-滚动复合摩擦的形式,降低了微织构刀具刀-屑界面间的摩擦系数,改善了摩擦性能,有利于提高刀具耐用度。  相似文献   

11.
The response of the tool-chip interface is characterized in the orthogonal cutting process by numerical and analytical means and compared to experimental results. We study the link between local parameters (chip temperature, sliding friction coefficient, tool geometry) and overall friction characteristics depicting the global response of the tool-chip interface. Sticking and sliding contact regimes are described.The overall friction characteristics of the tool are represented by two quantities: (i) the mean friction coefficient qualifies the global response of the tool rake face (tool edge excluded) and (ii) the apparent friction coefficient reflects the overall response of the entire tool face, the effect of the edge radius being included. When sticking contact is dominant the mean friction coefficient is shown to be essentially the ratio of the average shear flow stress along the sticking zone by the average normal stress along the contact zone. The dependence of overall friction characteristics is analyzed with respect to tool geometry and cutting conditions. The differences between mean friction and apparent friction are quantified. It is demonstrated that the evolutions of the apparent and of the mean friction coefficients are essentially controlled by thermal effects. Constitutive relationships are proposed which depict the overall friction characteristics as functions of the maximum chip temperature along the rake face. This approach offers a simple way for describing the effect of cutting conditions on the tool-chip interface response. Finally, the contact length and contact forces are analyzed. Throughout the paper, the consistency between numerical, analytical and experimental results is systematically checked.  相似文献   

12.
The environmental obligations of manufacturing industries have resulted in the development of new cutting tools during metal machining without cutting fluids. According to the green manufacturing principles and to further improve the cutting performance of tools in dry cutting, novel cutting tools combined with nanotextures and WS2/Zr coatings (AN-AW) are developed, and cutting tests without cutting fluids on hardened steel exhibit that the AN-AW tool is the most effective in reducing the cutting forces compared with the WS2/Zr-coated tool (AS-W) and conventional tool (AS). Based on the experiments and theoretical models, the tool-chip interface characteristics are further investigated quantitatively to analyze the mechanism of the AN-AW tool. Results show that the AN-AW tool has a significant effect on the tool-chip interface characteristics. The AN-AW tool is the most effective in reducing the friction coefficient and tool-chip contact length; meanwhile, it changes the stress distribution at the tool-chip interface. The reduced tool-chip contact length and sticking-total contact length ratio as well as the lubricant film formed by the WS2/Zr coatings at the tool-chip interface may be responsible for the changes of friction and stress distribution for the AN-AW tool.  相似文献   

13.
The interaction between the tool rake face and the chip is critical to chip morphology, cutting forces, surface quality, and other phenomena in machining. A large body of existing literature on nanometric machining or nano-scratching only considers the overall friction behavior by simply regarding the total force along tool movement direction as the friction force, which is not suitable for describing the intriguing friction phenomena along the tool/chip interface. In this study, the molecular dynamic (MD) simulation is used to model the nanometric machining process of single crystal copper with diamond tools. The effects of three factors, namely, tool rake angle, depth of cut, and tool travel distance, are considered. The simulation results reveal that the normal force and friction force distributions along tool/chip interface for all cases investigated are similarly shaped. It is found that the normal force consistently increases along the entire tool/chip interface when a more negative rake angle tool is used. However, the friction force increases as the rake angle becomes more negative only in the contact area close to the tool tip, and it reverses the trend in the middle of tool/chip interface. Meanwhile, the increase of depth of cut overall increases the normal force along the tool/chip interface, but the friction force does not necessarily increase. Also, the progress of tool into the work material does not change the patterns of normal force, friction force, or friction coefficient distributions to a great extent. More importantly, it is discovered that the traditional sliding model with a constant friction coefficient can be used to approximate the later section of friction distributions. However, no friction model for traditional machining is appropriate to describe the first section of friction distributions obtained from the MD simulation.  相似文献   

14.
为提高刀具润滑性能,尽量减少切削液的使用,制备出在刀屑界面持续润滑的新型刀具,能够将切削液通过微通道直接输送到刀屑接触界面内部。采用该新型刀具与普通刀具在干切削和浇注切削液条件下分别进行切削45钢试验,测量了切削三向力,对刀具前刀面磨损面进行SEM微观形貌分析及元素检测,分析了刀具的摩擦磨损特性及润滑机理。试验结果表明,与普通刀具在干切削和浇注切削液条件下相比,刀屑界面持续润滑刀具能够有效减少切削过程中的摩擦磨损,而切削液用量只有传统浇注式切削的1/120。分析前刀面的元素可知,切削液能够更加深入到离主切削刃更近的区域,并能持续供给,这是该刀具具有更好的减摩抗磨效果的主要原因。尽管新型刀具的黏结情况大大缓解,但刀具的磨损机理仍然以黏结磨损和氧化磨损为主。  相似文献   

15.
基于更新的拉格朗日方程,模拟了高速条件下金属正交切削的加工过程,并在刀-屑接触表面上分别建立了库仑摩擦模型和粘结-滑移摩擦模型,通过将切削力、吃刀抗力、切屑厚度和刀-屑接触长度的模拟预测值与相关文献的试验结果比较表明,粘结-滑移摩擦模型更符合实际的摩擦模型,即在金属切削过程中,刀-屑接触表面上同时存在滑移摩擦和粘结摩擦。  相似文献   

16.
A slip-line field model for orthogonal cutting with a tool containing a groove-like feature on its rake face is proposed. Primary contact at the tool-chip interface is taken to be plastic. Based on experimental observations, it is assumed that the chip flows into the groove, and is forced to curl by Coulomb friction contact with the groove back wall. Solutions obtained for different groove geometries, groove positions relative to the cutting edge, rake angles and tool-chip interface friction using the matrix operator method are presented and discussed. The calculated results are in general agreement with experimental observations. It is found that the model can be formulated so that it can be used to predict the cutting geometry for obstruction-type chip breakers as well.  相似文献   

17.
The International Journal of Advanced Manufacturing Technology - The friction model in the tool-chip interface has significant influences on predicting chip forms, cutting forces, and cutting tool...  相似文献   

18.
Experimental studies have shown that improved metal cutting efficiency can be obtained when a high-pressure water/coolant jet is injected at the tool–chip interface. The pressure exerted on the chip face by the jet is expected to reduce, for example, friction along the tool–chip interface, temperature rise in the chip and the workpiece, the cutting force, and residual stress in the finished workpiece, leading to a longer tool life and a better surface integrity for the finished workpiece. This paper presents the results of finite element simulations of high-pressure water-jet assisted orthogonal metal cutting, in which the water jet is injected directly into the tool–chip interface through a small hole on the rake face of the tool. The mechanical effect of the high-pressure water jet is approximated as a pressure loading at the tool–chip interface. The frictional interaction along the tool–chip interface is modeled by using a modified Coulomb friction law. Chip separation is modeled by a nodal release technique and is based on a critical stress criterion. The effect of temperature, strain rate and large strain is considered. Cooling effect of the high-pressure jet on the temperature distribution is modeled with a convective heat-transfer coefficient. The effect of water jet hole position and pressure is studied. Contour plots showing the distributions of steady-state temperature and stress and the residual stress are presented. The simulation results show a reduction in temperature, the cutting force and residual stresses for water-jet assisted cutting conditions. The mechanical effect of the water jet is found to reduce the contact pressure and shear stress along the tool–chip interface and also the contact zone length for certain water jet hole locations.  相似文献   

19.
An analytical modelling approach based on Oxley's predictive machining theory is presented to evaluate the cutting forces, chip thickness and temperature distributions in the orthogonal cutting process. In this approach, the work material properties are modelled using the Johnson–Cook constitutive material law, which represents the flow stress of the material as a function of strain, strain rate, and temperature. For the determination of the tool-chip interface temperature, an evenly distributed rectangular heat source near the cutting edge is used instead of a plane heat source. The tool thermal model is simplified by neglecting the temperature variations along the tool-chip interface to avoid the high cost of computation time. Finite difference method is applied for solution of the thermal model. The performance of the developed model is validated with the experimental data in machining of steel 1045. A comparison of the outputs from Oxley's original model and the modified model is provided. The model is further assessed by using two other materials, Al 6086-T6 and Ti6Al4V. Close agreements with experimental results have been shown.  相似文献   

20.
A slip-line field model for orthogonal cutting with chip breaker and flank wear has been developed. For a worn tool, this slip-line field includes a primary deformation zone with finite thickness; two secondary shear zones, one along the rake face and the other along the flank face; a predeformation zone; a curled chip; and a flank force system. It is shown that the cutting geometry is completely determined by specifying the rake angle, tool-chip interface friction and the chip breaker constraint. The chip radius of curvature, chip thickness, and the stresses and velocities within the plastic region are readily computed. Grid deformation patterns, calculated with the velocity field determined, demonstrate that the predicted effects of changes in frictional conditions at the tool-chip interface and of the rake angle on chip formation are in accord with experimental observations. The calculated normal stress distribution at the tool-chip interface is in general agreement with previously reported experimental measurements. The model proposed predicts a linear relationship between flank wear and cutting force components. The results also show that non-zero strains occur at and below the machined surface when machining with a worn tool. Severity and depth of deformation below the machined surface increases with increasing flank wear. Forces acting on the chip breaker surface are found to be small and suggest that chip control for automated machining may be feasible with other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号