首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic mechanical analysis and dielectric relaxation spectra of conductive carbon black reinforced microcellular EPDM vulcanizates were used to study the relaxation behavior as a function of temperature (−90 to +100°C) and frequency (0.01–105 Hz). The effect of filler and blowing agent loadings on dynamic mechanical and dielectric relaxation characteristics has been investigated. The effect of filler and blowing agent loadings on glass transition temperature was marginal for all the composites (Tg value was in the range of −39 to −35°C), which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. Strain-dependent dynamical parameters were evaluated at dynamic strain amplitudes of 0.07–5%. The nonlinearity in storage modulus has been explained based on the concept of filler–polymer interaction and interaggregate attraction (filler networking) of carbon black. The variation in real and complex part of impedance with frequency has been studied as a function of filler and blowing agent loading. Additionally, the effect of crosslinking on the dielectric relaxation has also been reported. POLYM. ENG. SCI., 47:984–995, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
The frequency dependent dielectric relaxation behavior of conductive carbon black reinforced chlorosulfonated polyethylene (CSM) vulcanizates has been studied for different filler loadings in the frequency range of 102–106 Hz over a wide range of temperatures (30–120°C). The effects of filler loadings on the dielectric permittivity (ε′), dielectric loss tangent (tan δ), impedance, and electrical conductivity were studied. The variation of the dielectric permittivity with the filler loadings was explained on the basis of interfacial polarization of the filler in the polymer matrix. The frequency dependence of ac conductivity has been investigated using percolation theory. The effect of filler loading on the complex and real parts of impedance was clearly observed, which can be explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. The percolation threshold occurred near 30 phr of filler loading. Scanning electron microphotographs showed the agglomeration of the filler on and above these filler loadings. Additionally, the effect of temperature on dielectric loss tangent, dielectric permittivity, ac conductivity, and Nyquist plot of conductive black reinforced CSM vulcanizates has been studied. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
The dielectric relaxation behavior of different conducting carbon black‐filled ethylene‐octene copolymer (EOC) vulcanizates prepared by melt‐mixing method has been studied as a function of frequency (100 Hz–5 MHz) over a wide range of temperatures (25–100°C). The effect of filler loading and frequency on AC conductivity, dielectric permittivity, impedance, and dielectric loss tangent (tanδ) has been studied. The nature of variation of the dielectric permittivity with the filler loadings was explained on the basis of interfacial polarization of the filler in the polymer matrix. The effect of filler loading on the real and complex part of the impedance was explained by the relaxation dynamics of the polymer chains in the vicinity of the fillers. The effect of filler and temperature on dielectric loss tangent, dielectric permittivity, AC conductivity, and Nyquist plot was also reported. The bound rubber (BR) value increases with increase in filler loading suggesting the formation of strong interphase, which is correlated with dielectric loss. Thermal activation energy (Ea) was found to be decreasing with the temperature, which follows the Arrhenius relation: τb = τ0 exp(−Ea/KBT) where τb is the relaxation time for the bulk material. From the plot of lnτb versus inverse of absolute temperature (1/T), the activation energies (Ea) were found to be 0.37 and 0.44eV, respectively. The percolation threshold was observed with 40 phr carbon black loading. POLYM. COMPOS., 37:342–352, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
The effect of processing variables (filler and blowing agent loadings) and operating variables (frequency and sample thickness) on the impedance and electromagnetic interference (EMI) shielding effectiveness of excess conductive carbon black reinforced solid and microcellular EPDM vulcanizates has been investigated. Increasing frequency showed a decrease in real part of complex impedance for both filler and blowing agent loadings, whereas the imaginary part showed a slight peak in the range of 9–10 GHz followed by a subsequent decrease. The measured impedance values were plotted as Nyquist plots (Argand diagrams) and a Resistor–Capacitance model was assumed. Increasing blowing agent loadings showed a marginal increase in the bulk resistivity, whereas increasing filler loadings had a significant decrease. The EMI shielding effectiveness increased monotonically with filler loading and showed a maximum of around 75 dB at 60 phr loadings, thus making them suitable for shielding applications. Increasing blowing agent loadings showed an increase in shielding effectiveness at low loadings (2 phr) whereas further increase showed a rapid decrease. This has been explained on the basis of formation of voids in the composite, which affect the absorbance capacity of the microcellular vulcanizates. However, the microcellular composites showed sufficiently high values in the range of 50–60 Db, thus making Vulcan XC 72 reinforced microcellular EPDM vulcanizates as ideal packaging material for EMI shielding applications. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
The dielectric relaxation characteristics of conductive carbon black (CCB) reinforced ethylene acrylic elastomer (AEM) vulcanizates have been studied as a function of frequency (101–106 Hz) at different filler loading over a wide range of temperatures (30–120°C). The effect of filler loadings on the dielectric permittivity (ε′), loss tangent (tan δ), complex impedance (Z*), and electrical conductivity (σac) were studied. The variation of ε′ with filler loading has been explained based on the interfacial polarization of the fillers within a heterogeneous system. The effect of filler loading on the imaginary (Z″) and real (Z′) part of Z* were distinctly visible, which may be due to the relaxation dynamics of polymer chains at the polymer–filler interface. The frequency dependency of σac has been investigated using percolation theory. The phenomenon of percolation in the composites has been discussed in terms of σac. The percolation threshold (?crit) occurred in the range of 20–30 phr (parts per hundred) of filler loading. The effect of temperature on tan δ, ε′, σac, and Nyquist plots of CCB‐based AEM vulcanizates has been investigated. The CCB was uniformly dispersed within the AEM matrix as studied from the transmission electron microscope (TEM) photomicrographs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Dielectric relaxation spectra of conductive carbon black reinforced microcellular EPDM vulcanizates were used to study their relaxation behavior in the frequency range of 0.01–105 Hz over a wide range of temperature from 30 to 120°C. The effect of variation in filler loading and blowing agent loading (density) on dielectric characteristics such as impedance, dielectric constant, and conductivity has been studied. The experimental results show that the relative dielectric permittivity of the composites depends strongly on the extent of carbon black and blowing agent concentrations. The frequency dependence of AC conductivity has been investigated by using Percolation theory. The permittivity and conductivity of the microcellular composites have been analyzed based on scaling theory at increasing temperatures. The applicability of Lichtenecker‐Rother's “rule of mixture” to describe the complex permittivity of the composite has also been investigated. Irrespective of the blowing agent loading and temperature, the percolation threshold as studied by DC conductivity was found to be at 40 phr loading of the filler. Scanning electron microphotographs showed agglomeration of the filler above this concentration and formation of a continuous network structure. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

7.
Dynamic viscoelastic properties of Vulcan XC 72 (excess conductive carbon black)‐reinforced solid‐ and closed‐cell microcellular controlled long chain branching grade oil‐extended EPDM (Keltan 7341A) rubber vulcanizates were studied at four frequencies of 3.5, 11, 35, and 110 Hz, and at a temperature range of ?100 to 160°C.The effect of blowing agent (ADC 21) loading on storage modulus (E′) and loss tangent (tan δ) was studied. The log of storage modulus bears a linear relationship with the log of density for both solid and microcellular rubber. Relative storage modulus (E/E) decreases with decrease in relative density (ρfs). Both E′ and tan δ were found to be dependent on frequency and temperature. The master curves of the storage modulus versus log temperature‐reduced frequency were formed by superimposing E′ results and by using shift factors calculated by Arrhenius equation. Strain‐dependent isothermal dynamic viscoelastic properties were carried out for dynamic strain amplitude of 0.08–7%. Cole–Cole plots of microcellular vulcanizates show a circular arc with blowing agent (density). Empirical relationship between tan δ versus E′ is found to be linear, whose slope is independent of blowing agent loading or density. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1600–1608, 2006  相似文献   

8.
EPDM的压缩永久变形性能研究   总被引:1,自引:0,他引:1  
研究了硫化体系、填充体系、增塑体系和硫化时间对EPDM高温下压缩永久变形的影响。实验结果表明:在硫黄、过氧化物、酚醛树脂3种硫化体系中,过氧化物配合助交联剂(TAIC)硫化的EP—DM压缩永久变形最小,硫磺硫化体系硫化胶则最大;胶料的压缩永久变形随着炭黑类填料用量的增加而降低,却随着无机类填料用量的增加而增加;填充具有高结构、适当粒径的炭黑(如N550)并适当延长硫化时间能有效降低EPDM的压缩永久变形。  相似文献   

9.
Compressive stress‐strain properties of unfilled, CaCO3, silica and aluminum silicate filled closed‐cell microcellular ethylene‐octene co‐polymer vulcanizates were studied with variation of blowing agent loading (density). With decrease in density, the compressive stress‐strain curves for microcellular vulcanizates behave differently from those of the solid vulcanizates. The stress‐strain properties are found to be strain rate dependent. The log‐log plots of relative compressive moduli versus relative density of the microcellular vulcanizates show a fairly linear correlation. The energy absorption behavior was also studied from the stress‐strain properties. The efficiency, E, and Ideality parameter, I, were evaluated. These parameters were plotted against stress to find the maximum efficiency and maximum ideality region, which will make these materials suitable for cushioning and packaging applications. The cushioning factor, C, for microcellular vulcanizates has also been evaluated for various systems.  相似文献   

10.
Compressive stress–strain properties of closed-cell microcellular EPDM rubber vulcanizates with and without a filler were studied with the variation of density. For filler variation studies, silica and carbon black (N330) were used. With a decrease in density, the stress–strain curve for microcellular EPDM behaves differently from that for the solid vulcanizates: The curve rises steeply when cell breakdown occurs. The compressive stress–strain properties are found to depend on the strain rate. The compression set at constant stress increases with decreasing density. The energy-absorption behavior was studied from the compressive stress–strain properties. The efficiency, E, and ideality, I, parameters were also determined as they are useful for the evaluation of closed-cell microcellular rubber as a cushioning and packaging material. These parameters were plotted against stress to find the maximum efficiency and maximum ideality region which will make these materials suitable for cushioning or packaging applications. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:263–269, 1998  相似文献   

11.
EPDM/PP热塑性动态硫化胶的进展   总被引:15,自引:0,他引:15  
阐述了EPDM/PP共混型热塑性动态硫化胶的发展历史,制备工艺,微观相态结构,性能,加工技术和应用领域。  相似文献   

12.
The morphology of the microcellular ethylene–propylene–diene terpolymer (EPDM) vulcanizes of both an unfilled and filled compound was studied from SEM photomicrographs. Carbon blacks adversely affect the average cell size, maximum cell size, and cell density. Enclosed gas pressure in a closed cell increases the relative modulus at higher strain. Tensile strength decreases more steeply than the expected value obeying the additive rule. At higher temperature, tensile strength, elongation at break, and modulus values decrease. The stress-relaxation behavior is independent of blowing agent loading, i.e., the density of closed-cell microcellular rubber. The elastic nature of the closed cell, i.e., the gas bubble in the microcellular rubber, reduces the hysteresis loss compared to solid rubber vulcanizates. Theoretically calculated flaw sizes are found to be about 3.4 times larger than the maximum cell sizes observed from SEM photomicrographs. It reveals that tear path deviates from the linear front and gives an effective larger depth of the flaws. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Networks were prepared in the swollen and dry states to investigate the influence of physical relaxation on chemical stress–relaxation. The stress–relaxation behavior of solution-cured samples was different significantly from that of the samples crosslinked conventionally. The same result was also observed in the number of chain scission for both kinds of samples. On the other hand, the number of chain scission estimated by using the swelling method for samples crosslinked conventionally was in good agreement with that by the chemical stress–relaxation for solution-cured samples. It was found that there is little or no influence of the physical relaxation caused by entanglements, and no effect of dangling chains arising from scission in the equilibrium swelling. The relative change of network chain density determined by means of the swelling method was also consistent with that by sol fraction determination. These results indicate that the swelling method can be used as a measure of a degree of degradation on chemorheology. Taking into account the influence of physical relaxation on chemical stress–relaxation, a new relationship between the relative stress decay and the relative network chain density was experimentally proposed.  相似文献   

14.
The strain dependence of the dynamic mechanical properties of HAF-N330-filled EPDM vulcanizate was studied using a Rheovibron DDV III EP. It is shown that when a dynamic strain is superposed on a static strain, the viscoelastic response of filled rubbers becomes more complex. Under these conditions, dynamic mechanical properties do not correlate with the double strain amplitude. A strain called the “total strain” has been defined in order to interpret the experimental results. It is also shown that the dynamic mechanical properties are displacement velocity dependent, while the comparison is made under identical conditions of strain and frequency. Separability of time and strain effects is observed for the storage modulus, whereas the loss modulus is shown to be a nonseparable function. The elastic and the relaxation components, constituting the mixed function representing the storage modulus are shown to have similar deformation dependence. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Zvi Rigbi  Nissim Sabatov 《Polymer》1974,15(6):373-378
Two models are proposed for vulcanizates reinforced by fibrillar fillers. These are then analysed for swelling behaviour by considering the swelling of a cylinder of elastomer surrounding an individual fibre and firmly attached to it. A complex of such cylinders in a laminated geometry is then studied. Graphs are given which may be used to study the swelling of rubberized cord.  相似文献   

16.
The dynamic mechanical property of particle‐reinforced ethylene–propylene–diene monomer (EPDM) matrix composites has been studied by using a dynamic mechanical thermal analyzer (DMTA). The individual composite has been reinforced with the various reinforcing particles as follows: silicon carbide particles (SiCps) of 60 μm in average diameter with various volume fractions (i.e., 10–40%); copper (Cu) and aluminum (Al) particles with 20 vol %; and SiCps with 6 and 36 μm in different average diameters with 20 vol % over the total composite volume. It is shown from the experimental results that the dynamic elastic modulus values increase and the composites with 40 vol % SiCps exhibit higher tan δ values through the entire rubbery phase after the glass transition region compared with the composites with lower particle volume percentages. This shows that the composites with 20 vol % Cu particles have the higher dynamic elastic modulus but the lower peak tan δ value than the composites with other particles of 20 vol % do. Scanning electron microscopy results show that the effective particle volume in the composite with Cu particles is higher than the other composites, although the same particle volume fraction of 20% has been used. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1595–1601, 2003  相似文献   

17.
Dynamic mechanical analysis and dielectric relaxation spectra of exfoliated nano graphite reinforced flouroelastomer composites were used to study their relaxation behavior as a function of temperature (−80°C to +40°C) and frequency (0.01 to 105 Hz). The effect of filler loadings on glass transition temperature was marginal for all the composites and Tg value was in the narrow range of 7.8–8.4°C, which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. Strain‐dependent dynamical parameters were evaluated at dynamic strain amplitudes of 0.01–10%. The nonlinearity in storage modulus has been explained on the concept of filler‐polymer interaction and filler aggregation of the nano graphite platelets. The variation in real and complex part of impedance with frequency has been studied as a function of filler. The percolation of the nano graphite as studied by conductivity measurements is also reported. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

18.
The rheological behavior of ethylene propylene diene monomer (EPDM) compounds containing ground EPDM waste (W‐EPDM) of known composition was studied by using a Monsanto processability tester in a temperature range of 90–110°C and a shear rate range of 306.7–1533.24 s?1. It is found that the shear viscosity decreases slightly with increasing W‐EPDM loading because of wall slip that results from the migration of lubricants from the W‐EPDM. The addition of W‐EPDM to raw EPDM results in a decreased die swell at all temperatures and shear rates. SEM photomicrographs of the EPDM extrudate surface show improved surface smoothness and reduced extrudate distortion when EPDM is blended with W‐EPDM. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2204–2215, 2003  相似文献   

19.
Step‐strain stress relaxation experiments were performed on natural rubber vulcanizates of various carbon black (HAF) concentrations by subjecting the samples to a very rapid strain and fixing its length at the deformed state. Time–temperature superposition in the viscoelastic region was evaluated to investigate the effect of temperature on the relaxation times of the rubbery composites. Remarkably, it was observed that, at higher HAF concentrations, increasing the temperature had a lesser effect on decreasing the overall stress values. That was attributed to the lower number of elastomeric chains per unit volume due to the agglomeration of the carbon black particles. The energy barrier resulting from the adsorption of the rubbery chains on the filler particles was insufficient to drastically reduce the diffusion and rearrangement of the polymer chains. The activation energy of the rubber‐like deformation calculated from the time–temperature superposition was shown to be independent of temperature. Interestingly, the viscosity coefficients showed a large increase with a modest addition of the carbon black. This is due to the long‐range nature of the temporary bonds formed between the polymer molecules and the surface‐active carbon black. The stress–strain of the rubbery composites was shown to behave in a Gaussian manner in accordance with the Mooney–Rivlin relationship. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3387–3393, 2004  相似文献   

20.
TPVs filled with different amounts (0–50 phr) of carbon black were prepared via melt mixing by dynamic vulcanization in Haake plasticorder at 150°C and 40rpm and then the properties of them were studied. Torque-time curves showed that the curing degree reached a biggest value at 10 phr and then decreased with the increase of filling content while the curing rate was always rising. Mechanical properties such as tensile strength, tear strength, modulus as well as hardness increased with the increment of carbon black content while the tension set at break was reduced dramatically. Two phase morphology was observed by SEM photographs and the effect of carbon black on curing extent was testified. To illuminate the effect of carbon black, curometer curves and carbon black dispersion pictures were also analyzed. Rubber processing analyzer (RPA) experiments proved that there was a progressive nonlinear behavior, which was more and more clearly expressed with the increment of carbon black content and could be explained via the Payne effect. But the TPVs containing highest carbon black exhibited the fastest drop of G′ with increasing strain amplitude as obtained from the value of G0′ − G′. The order of tanδ at different carbon black content was tanδ (10 phr) < tanδ (0 phr) < tanδ (30 phr) < tanδ (50 phr) at lower strain amplitude. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号