首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
染料敏化太阳能电池(dye-sensitized solar cells, DSSCs)作为制作工艺简易, 成本低廉, 环境友好的新型太阳能电池, 其发展一直备受关注。对电极作为DSSC的核心部件之一, 其制备工艺会直接影响到DSSC的发展和应用。以低成本高性能的催化材料代替传统的贵金属Pt对电极是降低DSSC生产成本的有效途径之一。具有类Pt催化性能的过渡金属化合物(TMCs)由于种类繁多, 制备方式简单多样, 近年来成为DSSC对电极研究中的热点。本文综述了DSSC过渡金属化合物对电极的最新研究进展, 总结概括了过渡金属化合物对电极的制备方法以及性能特点, 并对其发展方向和应用前景进行了分析。  相似文献   

2.
对电极一直是染料敏化太阳能电池的重要组成部分,铂(Pt)对电极具有良好的性能,但高成本限制了它的应用,低成本、性能较好的碳对电极和导电聚合物对电极具有广阔的发展前景。开发性能稳定,成本低、催化活性高、制备工艺简单的染料敏化太阳能电池对电极材料是染料敏化太阳电池发展的必经过程。  相似文献   

3.
近年来,第三代太阳能电池——染料敏化太阳能电池(dye-sensitized solar cells,DSSC)因制造成本低、环境污染少、生产工序简单等优点而备受关注。对电极作为DSSC的重要组成部分是影响其光电转换性能及稳定性的重要因素。综述了对电极材料在DSSC中的作用以及研究现状,重点介绍了过渡金属硫化物(transition-metal sulfides,TMSs)在DSSC中的研究进展,阐述了TMSs与其他对电极材料相比具有的优异性能及其制备方法和性能参数,最后提出了今后DSSC研究的主要方向是继续开发各种原料易得、成本低廉和稳定高效的新型对电极材料。TMSs染料敏化太阳能电池作为化合物薄膜太阳能电池中非常重要的组成部分,具有很大的应用前景。  相似文献   

4.
作为染料敏化太阳能电池的重要组成部分,对电极的催化性能和价格直接关系到电池的光电转换效率和成本。作为对电极的催化材料,导电聚合物、碳材料和无机化合物等材料虽成本低廉,但其催化性能仍不及金属铂。因此,重点综述了近年来染料敏化太阳能电池纯铂对电极的研究状况,并指出了纯铂对电极中有待解决的问题及今后的发展方向,同时还介绍了染料敏化太阳能电池的工作原理和对电极的作用。  相似文献   

5.
量子点敏化太阳能电池(Quantum Dot-Sensitized Solar cells, QDSCs)制备工艺简单, 制造成本低廉, 是一种有希望的新型太阳能电池。QDSCs利用量子点具有光谱吸收强、尺寸可调和多激子效应等优点, 能够提高其光电转换效率; 同时, 利用无机量子点替代染料作为敏化剂, 能够解决染料敏化太阳能电池(DSCs)的稳定性问题。但是, QDSCs光电转换效率较低是制约其应用的主要问题。近年来, 通过改变和调控对电极的材料和电子特性提高QDSCs的光电效率的方法受到了广泛关注。本文综述了QDSCs对电极材料的制备方法、微观形貌和晶体结构; 重点分析了金属化合物、复合材料、杂化材料、多元金属硫族化合物、导电聚合物和碳材料对电极对量子点敏化太阳能电池的电荷转移阻抗、光电性能等参数的影响; 并分析影响其电催化活性和电子传输性能的主要因素。最后, 提出通过表面修饰、复合和杂化等方法构筑新型对电极材料, 进而改善和提高QDSCs转换效率和稳定性, 是今后的研究重点和研究方向。  相似文献   

6.
染料敏化太阳能电池以其成本低廉、原材料丰富、制作工艺简单、理论转换效率高、对环境无污染等优势而备受人们关注,并在工业化生产中逐渐得到推广和应用。虽然人们在物理和化学方面对其进行了大量的研究,但其转换效率并没有得到明显的提高。对电极作为染料敏化太阳能电池的重要组成部分,其材料的性能直接影响着染料敏化太阳能电池的转换效率。为此,不少科研工作者提出了一个通过优化对电极材料自身结构来提高整个染料敏化太阳能电池光电性能的议题。着重综述了近几年对电极材料自身结构优化方面具有代表性的研究成果。  相似文献   

7.
碳材料在太阳能电池对电极中的研究进展   总被引:1,自引:0,他引:1  
简要说明了太阳能电池对电极的作用,并阐述了铂对电极、镍对电极、聚合物对电极和氧化铜对电极目前的发展状况.碳材料具有良好的导电性能和催化性能,具有制备太阳能电池对电极的基本性质.详细论述了碳材料对电板的制备工艺及其性能参数,与其它对电极相比,碳材料制备的对电极导电性能好,光电转化率可达到铂电极的90%,优于其它材料制备的对电极,而且价格低廉,因此碳材料对电极具有广阔的发展前景.碳材料对电极是染料敏化太阳能电池的重要研究方向.  相似文献   

8.
从柔性基体的选择,高聚物基底铂对电极的低温制备方法,金属基底铂对电极以及其它催化材料柔性对电极等几个方面介绍了染料敏化太阳能电池柔性对电极的研究现状,重点评述了高聚物基底铂对电极的低温制备技术,如磁控溅射真空镀铂、化学镀铂、电化学镀铂、雕版印刷、旋转涂布等,并就柔性对电极的未来发展方向进行了展望.  相似文献   

9.
李国  胡志强  高岩  刘敬肖  刘贵山 《材料导报》2007,21(12):16-19,40
简要说明了染料敏化太阳能电池中对电极的作用,指出对电极是染料敏化太阳能电池的重要研究方向。详细介绍了各类对电极的特点和制备工艺,通过对比发现,铂对电极性能最好,但高成本限制了它的应用;价格低廉、性能较高的碳和聚合物对电极的发展前景广阔。最后论述了对电极的发展方向和国内外的研究现状。  相似文献   

10.
染料敏化太阳能电池的研究进展   总被引:1,自引:1,他引:0  
染料敏化太阳能电池(DSSC)由于价格低廉、制备工艺简单、理论光电转化效率高等优点,成为极具研发潜力的太阳能电池之一。介绍了染料敏化太阳能电池的结构和工作原理,综述了各组成部分染料敏化剂、光阳极、电解质和对电极的研究进展,分析探讨了改进和提高DSSC性能的方法和途径,并展望了其未来的发展趋势。  相似文献   

11.
Dye‐sensitized solar cells (DSSCs) have attracted widespread attention in recent years as potential cost‐effective alternatives to silicon‐based and thin‐film solar cells. Within typical DSSCs, the counter electrode (CE) is vital to collect electrons from the external circuit and catalyze the I3? reduction in the electrolyte. Careful design of the CEs can improve the catalytic activity and chemical stability associated with the liquid redox electrolyte used in most cells. In this Progress Report, advances made by our groups in the development of CEs for DSSCs are reviewed, highlighting important contributions that promise low‐cost, efficient, and robust DSSC systems. Specifically, we focus on the design of novel Pt‐free CE catalytic materials, including design ideas, fabrication approaches, characterization techniques, first‐principle density functional theory (DFT) calculations, ab‐initio Car‐Parrinello molecular dynamics (CPMD) simulations, and stability evaluations, that serve as practical alternatives to conventional noble metal Pt electrodes. We stress the merits and demerits of well‐designed Pt‐free CEs, such as carbon materials, conductive polymers, transition metal compounds (TMCs) and their corresponding hybrids. Also, the prospects and challenges of alternative Pt catalysts for their applications in new‐type DSSCs and other catalytic fields are discussed.  相似文献   

12.
Dye‐sensitized solar cells (DSCs) have received widespread attention owing to their low cost, easy fabrication, and relatively high solar‐to‐electricity conversion efficiency. Based on the nanocrystalline TiO2 electrode, Ru‐polypyridyl‐complex dye, liquid electrolyte with I?/I3? redox couple, and Pt counter electrode, DSCs have already exhibited an efficiency above 11% and offer an appealing alternative to conventional solar cells. However, further improvements in the efficiency and stability are still required to drive forward practical application. These improvements require the cooperative optimization of the component materials, structures, and processing techniques. In this Research News article, recent progress in DSCs made by our group are reviewed, including some novel approaches to the synthesis of solid‐state and environmentally friendly electrolytes, the fabrication of alternative low‐cost nanostructural electrodes, and the control of recombination at the interfaces.  相似文献   

13.
It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance–price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells.  相似文献   

14.
Dye‐sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large‐scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high‐efficiency Pt‐free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two‐step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first‐principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.  相似文献   

15.
As one type of emerging photovoltaic cell, dye‐sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco–friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light‐harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided.  相似文献   

16.
A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost‐effective solution‐based fabrication strategy for this new transparent electrode. The embedded nature of the metal‐mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum‐based metal deposition with an electrodeposition process and is potentially suitable for high‐throughput, large‐volume, and low‐cost production. In particular, this strategy enables fabrication of a high‐aspect‐ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq?1, as well as extremely high figures of merit up to 1.5 × 104, which are among the highest reported values in recent studies. Finally using our embedded metal‐mesh electrode, a flexible transparent thin‐film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.  相似文献   

17.
Safavi A  Tohidi M 《Analytical chemistry》2011,83(14):5502-5510
Fabrication of metal paste nanocomposite electrodes is introduced using metal nanostructures and ionic liquids. The combined application of unique properties of nanomaterials and ionic liquids in the design of these metal paste nanocomposites results in electrodes with interesting advantages compared to the conventional metal disk electrodes. In contrast to conventional metallic electrodes, which are usually prone to fouling effects and suffer from weak repeatability and reproducibility, these metal paste nanocomposite electrodes have very exciting advantages. Ease of electrode fabrication; cleaning and activating the electrode surface, together with high electrocatalytic activity; increased degree of active area and surface roughness; antifouling effect; good signal-to-noise ratio; low cost; and low weight are among the advantageous features of these electrodes. Compared to dropping mercury electrodes that have high toxicity, these metal paste nanocomposite electrodes have much less toxicity. Such abilities promote new opportunities for a wide range of electrochemical, sensing, and biosensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号