首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of dicumyl peroxide (DCP), the thermal plasticization of starch and its compatibilizing modification with polyethylene was accomplished by one‐step reactive extrusion in a single‐screw extruder at the same time. Because of the formation of polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) during the extrusion, it was used as the compatibilizer between the thermoplastic starch and polyethylene. The blending samples were characterized by means of thermogravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic thermal mechanical analysis (DTMA) and Fourier‐transform infrared (FTIR) analysis. The experimental results showed that in the presence of DCP the addition of MAH improved the mutual dispersion of molecules in thermoplastic starch and polyethylene. From TGA, we concluded that the thermal stability of the blends with MAH was improved compared with the blends without MAH. The DTMA and FTIR results indicated that, with the addition of MAH, the compatibility of molecules between thermoplastic starch and polyethylene in the blends was improved. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Morphology and rheological properties of low‐density polyethylene/linear low‐density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blends are experimentally investigated and theoretically analyzed using rheological models. Blending of LDPE/LLDPE (70/30 wt/wt) with 5–20 wt % of TPS and 3 wt % of PE‐grafted maleic anhydride (PE‐g‐MA) as a compatibilizer is performed in a twin‐screw extruder. Scanning electron micrographs show a fairly good dispersion of TPS in PE matrices in the presence of PE‐g‐MA. However, as the TPS content increases, the starch particle size increases. X‐ray diffraction patterns exhibit that with increase in TPS content, the intensity of the crystallization peaks slightly decreases and consequently crystal sizes of the blends decrease. The rheological analyses indicate that TPS can increase the elasticity and viscosity of the blends. With increasing the amount of TPS, starch particles interactions intensify and as a result the blend interface become weaker which are confirmed by relaxation time spectra and the prediction results of emulsion Palierne and Gramespacher‐Meissner models. It is demonstrated that there is a better agreement between experimental rheological data and Coran model than the emulsion models. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44719.  相似文献   

3.
In the presence of dicumyl peroxide, the compatibility of thermoplastic dry starch (DTPS)/poly(lactic acid) (PLA) blends, using maleic anhydride (MA) as compatibilizer, was investigated. The plasticization of starch and its compatibilizing modification with PLA was accomplished in a single‐screw extruder by one‐step reactive extrusion. In the presence of MA, the plasticization of starch in DTPS/PLA blends could be improved and homogeneous DTPS/PLA blends could be achieved as observed using scanning electron microscopy. Tensile tests showed that the tensile strength of compatibilized DTPS/PLA blends was about 40.5 MPa higher than that of the original composites. Differential thermal analysis indicated that the glass transition temperature of DTPS and PLA became closer in the presence of MA than the blend without any additions, which suggested the compatibility between DTPS and PLA was improved. In addition, Fourier transform infrared spectroscopy proved that MA improved the interaction between DTPS and PLA. At the same time, the blend became more thermally stable as shown by thermogravimetric analysis results. A novel decomposition peak at about 450 °C was detected in the compatibilized blend, which was higher than those observed for DTPS and PLA. Finally, a rheological study suggested that MA could improve the fluidity of DTPS/PLA blends. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
Linear low‐density polyethylenes and low‐density polyethylenes of various compositions were melt‐blended with a batch mixer. The blends were characterized by their melt strengths and other rheological properties. A simple method for measuring melt strength is presented. The melt strength of a blend may vary according to the additive rule or deviate from the additive rule by showing a synergistic or antagonistic effect. This article reports our investigation of the parameters controlling variations of the melt strength of a blend. The reciprocal of the melt strength of a blend correlates well with the reciprocal of the zero‐shear viscosity and the reciprocal of the relaxation time of the melt. An empirical equation relating the maximum increment (or decrement) of the melt strength to the melt indices of the blend components is proposed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1408–1418, 2002  相似文献   

5.
The thermal and mechanical properties of uncrosslinked three‐component blends of linear low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and a hard, paraffinic Fischer–Tropsch wax were investigated. A decrease in the total crystallinity with an increase in both LDPE and wax contents was observed. It was also observed that experimental enthalpy values of LLDPE in the blends were generally higher than the theoretically expected values, whereas in the case of LDPE the theoretically expected values were higher than the experimental values. In the presence of higher wax content there was a good correlation between experimental and theoretically expected enthalpy values. The DSC results showed changes in peak temperature of melting, as well as peak width, with changing blend composition. Most of these changes are explained in terms of the preferred cocrystallization of wax with LLDPE. Young's modulus, yield stress, and stress at break decreased with increasing LDPE content, whereas elongation at yield increased. This is in line with the decreasing crystallinity and increasing amorphous content expected with increasing LDPE content. Deviations from this behavior for samples containing 10% wax and relatively low LDPE contents are explained in terms of lower tie chain fractions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1748–1755, 2005  相似文献   

6.
7.
The degradation of different polyethylenes—low‐density polyethylene (LDPE), linear low‐density polyethylene (LLDPE), and high‐density polyethylene (HDPE)—with and without antioxidants and at different oxygen concentrations in the polymer granulates, have been studied in extrusion coating processing. The degradation was followed by online rheometry, size exclusion chromatography, surface oxidation index measurements, and gas chromatography–mass spectrometry. The degradations start in the extruder where primary radicals are formed, which are subject to the auto‐oxidation when oxygen is present. In the extruder, crosslinking or chain scissions reactions are dominating at low and high melt temperatures, respectively, for LDPE, and chain scission is overall dominating for the more linear LLDPE and HDPE resins. Additives such as antioxidants react with primary radicals formed in the melt. Degradation taking place in the film between the die orifice, and the quenching point is mainly related to the exposure time to air oxygen. Melt temperatures above 280°C give a dominating surface oxidation, which increases with the exposure time to air between die orifice and quenching too. A number of degradation products were identified—for example, aldehydes and organic acids—which were present in homologous series. The total amount of aldehydes and acids for each number of chain carbon atoms were appeared in the order of C5>C4>C6>C7?C2 for LDPE, C5>C6>C4>C7?C2 for LLDPE, and C5>C6>C7>C4?C2 for HDPE. The total amounts of oxidized compounds presented in the films were related to the processing conditions. Polymer melts exposed to oxygen at the highest temperatures and longest times showed the presence dialdehydes, in addition to the aldehydes and acids. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1525–1537, 2004  相似文献   

8.
The aim of this study was to evaluate the effect of cellulose nanofibers (CNFs) and acetylated cellulose nanofibers (ACNFs) on the properties of low‐density polyethylene/thermoplastic starch/polyethylene‐grafted maleic anhydride (LDPE/TPS/PE‐g‐MA) blends. For this purpose, CNFs, isolated from wheat straw fibers, were first acetylated using acetic anhydride in order to modify their hydrophilicity. Afterwards, LDPE/TPS/PE‐g‐MA blends were reinforced using either CNFs or ACNFs at various concentrations (1–5 wt%) with a twin‐screw extruder. The mechanical results demonstrated that addition of ACNFs more significantly improved the ultimate tensile strength and Young's modulus of blends than addition of CNFs, albeit elongation at break of both reinforced blends decreased compared with the neat sample. Additionally, biodegradability and water absorption capacity of blends improved due to the incorporation of both nanofibers, these effects being more pronounced for CNF‐assisted blends than ACNF‐reinforced counterparts. © 2018 Society of Chemical Industry  相似文献   

9.
Low‐density polyethylene (LDPE)/starch nanocomposite films were prepared by melt extrusion process. The first step includes the preparation of starch–clay nanocomposite by solution intercalation method. The resultant product was then melt mixed with the main matrix, which is LDPE. Maleic anhydride‐grafted polyethylene (MAgPE), produced by reactive extrusion, was used as a compatibilizer between starch and LDPE phases. The effects of using compatibilizer, clay, and plasticizers on physico‐mechanical properties were investigated. The results indicated that the initial intercalation reaction of clay layers with starch molecules, the conversion of starch into thermoplastic starch (TPS) by plasticizers, and using MAgPE as a compatibilizer provided uniform distribution of both starch particles and clay layers, without any need of alkyl ammonium treatment, in LDPE matrix. The nanocomposite films exhibited better tensile properties compared to clay‐free ones. In addition, the transparency of LDPE film did not significantly change in the presence of TPS and clay particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Because of their special functions, the application of nanoscale powders has recently attracted both industrial and theoretical interest. In this study, nanoscale TiO2, which exhibited a special UV absorption and consequent antibacterial function, was added to a low‐density polyethylene/linear low‐density polyethylene hybrid by melt compounding to yield functional composite membranes. TiO2 exhibited an apparent induced nucleation effect on the crystallization of polyethylene, and the size of the crystallites decreased while the number increaed with the introduction of TiO2; however, the crystallinity of polyethylene changed little. Also, TiO2 exhibited an ideal dispersion in the membrane with an average size less than 100 nm, and this excellent dispersion provided the membranes extra UV absorption; moreover, the transparency of the membranes was maintained to satisfy common requirements. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 216–221, 2005  相似文献   

11.
The mechanical properties of uncrosslinked and crosslinked linear low‐density polyethylene (LLDPE)/wax blends were investigated, using differential scanning calorimetry (DSC), tensile testing, and melt flow indexing. A decrease in the degree of crystallinity, as determined from the DSC melting enthalpies, was observed with an increase in the dicumyl peroxide (DCP) concentration. The Young's modulus increased with increased wax portions, and there was a higher increase for crosslinked blends. The yield stress generally decreased with increased peroxide content. Crosslinking caused an increase in elongation at yield, but increased wax content caused a decrease in elongation at yield. The stress at break generally increased with increasing peroxide content, but it decreased with increased wax content. The elongation at break decreased with an increase in the DCP concentration. Melt flow rate measurements indicated a mutual miscibility in LLDPE/wax blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 973–980, 2001  相似文献   

12.
The influences of ultrasonic oscillations on rheological behavior and mechanical properties of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE)/low‐density polyethylene (LDPE) blends were investigated. The experimental results showed that the presence of ultrasonic oscillations can increase the extrusion productivity of mLLDPE/LDPE blends and decrease their die pressure and melt viscosity during extrusion. Incorporation of LDPE increases the critical shear rate for sharkskin formation of extrudate, crystallinity, and mechanical properties of mLLDPE. The processing behavior and mechanical properties of mLLDPE/LDPE blends were further improved in the presence of ultrasonic oscillations during extrusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2522–2527, 2004  相似文献   

13.
Foamy low‐density polyethylene/plasticized starch (LDPE/PLST) blends at different compositions were produced in the presence of azodicarbonamide (ACA) compound as foaming agent. The LDPE/PLST blends before and after electron beam irradiation were investigated in terms of mechanical properties, bulk density, and structure morphology. Moreover, the biodegradability of these materials was evaluated by the soil burial test for 2 months, in which the buried sheets were also examined by scanning electron microscopy (SEM). The results showed that the increase of PLST content from 24 to 30% was accompanied by a decrease in the yield and break stresses of 10 and 20% for the unirradiated blends without the foaming agent, respectively. Further decrease in these mechanical parameters was observed after the foaming process. The bulk density, void fraction, cell size measurements as well as the examination by SEM illustrate clearly the cell growth of the foam structure. The soil burial test and SEM micrographs indicate the growth of microorganisms overall the blend sheets and that the blend was completely damaged after two months of burying. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Thermoplastic starch (TPS), as opposed to dry starch, is capable of flow and hence when mixed with other synthetic polymers can behave in a manner similar to conventional polymer-polymer blends. This paper presents an approach to preparing polyethylene/thermoplastic starch blends with unique properties. A one-step combined twin-screw/single screw extrusion setup is used to carry out the melt-melt mixing of the components. Glycerol is used as the starch plasticizer and its content in the TPS is varied from 29 to 40%.Under the particular one-step processing conditions used it is possible to develop continuous TPS (highly interconnected) and co-continuous polymer/TPS blend extruded ribbon which possess a high elongation at break, modulus and strength in the machine direction. The PE/TPS (55:45) blend prepared with TPS containing 36% glycerol maintains 94% of the elongation at break and 76% of the modulus of polyethylene. At a composition level of 71:29 PE/TPS for the same glycerol content, the blend retains 96% of the elongation at break and 100% of the modulus of polyethylene. These excellent properties are achieved in the absence of any interfacial modifier and despite the high levels of immiscibility in the polar-nonpolar TPS-PE system. The 55:45 blend possesses a 100% continuous or fully interconnected TPS morphology, as measured by hydrolytic extraction. This highly continuous TPS configuration within the blend should enhance its potential for environmental biodegradation. The elongation at break in the cross direction of these materials, although lower than the machine direction properties, also demonstrates ductility at high TPS concentrations. At a glycerol content of 36% in the TPS, the blends demonstrate only very low levels of sensitivity to moisture. A high degree of transparency is maintained over the entire concentration range due to the similar refractive indices of PE and TPS and the virtual absence of interfacial microvoiding.Effective control of the glycerol content, TPS concentration and processing conditions can result in a wide variety of morphological structures including spherical, fiber-like, highly continuous and co-continuous morphologies. These various blend morphologies are shown to be the determining parameters with respect to the observed mechanical properties.This material has the added benefit of containing large quantities of a renewable resource and hence represents a more sustainable alternative to pure synthetic polymers.  相似文献   

15.
In the current study, the effect of extracted cellulose nanofibers (CNFs) on rheological and mechanical properties and biodegradability of polyethylene/starch blend was investigated. The CNFs were extracted from wheat straws using a chemo‐mechanical method. Polyethylene/starch blend was reinforced by different amounts of CNF (6–14 wt%) using an internal mixer followed by a single screw extruder. The flow properties of nanocomposites were investigated by determining Melt Flow Index (MFI) and viscosity. Due to the weak interaction of cellulosic nanofibers and polymers, the flow behavior of nanocomposites was undesirable. Tensile tests were performed to evaluate the mechanical performance of nanocomposites. By increasing the CNF content, the tensile strength and elongation at break declined; whereas, the Young's modulus was improved. The biodegradation of cellulose nanocomposites was investigated by water absorption and degradability tests. Both experiments confirmed the progressive effect of cellulose nanofibers on the degradation of the composites. POLYM. COMPOS., 36:2309–2316, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
The effects of the starch content, photosensitizer content, and compatibilizer on the photobiodegradability of low‐density polyethylene (LDPE) and banana starch polymer blend films were investigated. The compatibilizer and photosensitizer used in the films were PE‐graft‐maleic anhydride (PE‐g‐MA) and benzophenone, respectively. Dried banana starch at 0–20% (w/w) of LDPE, benzophenone at 0–1% (w/w) of LDPE, and PE‐g‐MA at 10% (w/w) of banana starch were added to LDPE. The photodegradation of the blend films was performed with outdoor exposure. The progress of the photodegradation was followed by determining the carbonyl index derived from Fourier transform IR measurements and the changes in tensile properties. Biodegradation of the blend films was investigated by a soil burial test. The biodegradation process was followed by measuring the changes in the physical appearance, weight loss, and tensile properties of the films. The results showed that both photo‐ and biodegradation rates increased with increasing amounts of banana starch, whereas the tensile properties of the films decreased. The blends with higher amounts of benzophenone showed higher rates of photodegradation, although their biodegradation rates were reduced with an increase in benzophenone content. The addition of PE‐g‐MA into polymer blends led to an increase in the tensile properties whereas the photobiodegradation was slightly decreased compared to the films without PE‐g‐MA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2725–2736, 2006  相似文献   

17.
Degradation of the blends of low‐density polyethylene (LDPE) with a starch‐based additive namely, polystarch N was studied under various environmental conditions such as natural weather, soil and sea water in Saudi Arabia. Stress–strain properties and thermal behavior were investigated for the LDPE and LDPE/polystarch N blend having 40% (w/w) of polystarch N. Environmental ageing resulted in the reduction of percentage of elongation and crystallinity for the blend. Rheological studies and scanning electron microscope photomicrographs of the polymer samples retrieved after ageing showed that addition of polystarch N enhanced the degradation of LDPE. This is ascribed to high extent of chain scission and leaching out of starch present in polystarch N, which was corroborated by the results of morphology and Fourier transform infrared spectroscopy analyses. In the case of underground soil ageing, microbes present in the soil consume the starch in the blend, thus accelerating the degradation process. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
The dynamic rheological behavior of low‐density polyethylene (LDPE)/ultra‐high‐molecular‐weight polyethylene (UHMWPE) blends and linear low‐density polyethylene (LLDPE)/UHMWPE blends was measured in a parallel‐plate rheometer at 180, 190, and 200°C. Analysis of the log–additivity rule, Cole–Cole plots, Han curves, and Van Gurp curves of the LDPE/UHMWPE blends indicated that the blends were miscible in the melt. In contrast, the rheological properties of LLDPE/UHMWPE showed that the miscibility of the blends was decided by the composition of LLDPE. The differential scanning calorimetry results and scanning electron microscopy photos of the LLDPE/UHMWPE blends were consistent with the rheological properties, whereas with regard to the thermal and morphological properties of LDPE/UHMWPE blends, the results reveal three endothermic peaks and phase separation, which indicated a liquid–solid phase separation in the LDPE/UHMWPE blends. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号