首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction behavior and physical properties of polyurethane (PU)/clay nanocomposite systems were investigated. Organically modified clay was used as nanofillers to formulate the nanocomposites. Differential scanning calorimetry was used to study the reaction behavior of the PU/clay nanocomposite systems. The reaction rate of the nanocomposite systems increased with increasing clay content. The reaction kinetic parameters of proposed kinetic equations were determined by numerical methods. The glass transition temperatures of the PU/clay nanocomposite systems increased with increasing clay content. The thermal decomposition behavior of the PU/clay nanocomposites was measured by using thermogravimetric analysis. X‐ray diffractometer and transmission electronic microscope data showed the intercalation of PU resin between the silicate layers of the clay in the PU/clay nanocomposites. A universal testing machine was used to investigate the tensile properties of the PU/clay nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1641–1647, 2005  相似文献   

2.
The polymerization kinetics and thermal properties of dicyanate/clay nanocomposites were investigated. A type of organically modified clay was used as nanometer‐size fillers for the thermosetting dicyanate resin. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/clay nanocomposite systems. The polymerization rate of the nanocomposite systems increased with increasing clay content. An autocatalytic reaction mechanism could adequately describe the polymerization kinetics of the dicyanate/clay nanocomposite systems. The polymerization kinetic parameters were determined by fitting the DSC conversion data to the proposed kinetic equation. The glass‐transition temperature of the dicyanate/clay nanocomposites increased with increasing clay content. The thermal decomposition behavior of the dicyanate/clay nanocomposites was investigated by thermogravimetric analysis. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1955–1960, 2004  相似文献   

3.
The curing behavior of an epoxy/clay nanocomposite system composed of a bifunctional epoxy resin with an aromatic amine curing agent and an organically modified clay was investigated. Differential scanning calorimetry (DSC) was used to investigate the curing behavior of the epoxy/clay nanocomposite system. The curing rate of the nanocomposite system increased with increasing clay content. A kinetic equation, considering an autocatalytic reaction mechanism, could describe fairly well the curing behavior of the epoxy/clay nanocomposite system. The reaction kinetic parameters of the kinetic equation were determined by fitting DSC conversion data to the kinetic equation, using a nonlinear numerical method. Dynamic mechanical analysis was used to investigate the thermomechanical properties of the epoxy/clay nanocomposite system. The glass transition temperature of the epoxy/clay nanocomposite system increased slightly with increasing clay content. The structure of the nanocomposite system was characterized by X‐ray diffraction analysis and transmission electron microscope imaging. The formation of intercalated structures was observed dominantly in the epoxy/clay nanocomposites, together with some exfoliated structures. POLYM. ENG. SCI., 46:1318–1325, 2006. © 2006 Society of Plastics Engineers  相似文献   

4.
Low density polyethylene (LDPE)/clay nanocomposites, which can be used in packaging industries, were prepared by melt‐mix organoclay with polymer matrix (LDPE) and compatibilizer, polyethylene grafted maleic anhydride (PEMA). The pristine clay was first modified with alkylammonium salt surfactant, before melt‐mixed in twin screw extruder attached to blown‐film set. D‐spacing of clay and thermal behavior of nanocomposites were characterized by Wide‐Angle X‐ray Diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. WAXD pattern confirmed the increase in PEMA contents exhibited better dispersion of clay in nanocomposites. Moreover, DSC was reported the increased PEMA contents caused the decrease in degree of crystallinity. Mechanical properties of blown film specimens were tested in two directions of tensile tests: in transverse tests (TD tests) and in machine direction tests (MD tests). Tensile modulus and tensile strength at yield were improved when clay contents increased because of the reinforcing behavior of clay on both TD and MD tests. Tensile modulus of 7 wt % of clay in nanocomposite was 100% increasing from neat LDPE in TD tests and 17% increasing in MD tests. However, elongation at yield decreased when increased in clay loading. Oxygen permeability tests of LDPE/clay nanocomposites also decreased by 24% as the clay content increased to 7 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
The invention of Nylon‐6/clay nanocomposites by the Toyota Research Group of Japan heralded a new chapter in the field of polymer composites. This article highlights the work done in the field of rubber/clay nanocomposites. The preparations of rubber/clay nanocomposites by solution blending, latex compounding, and melt intercalation are covered and a thorough discussion of the mechanical properties of the various rubber/clay nanocomposite systems is presented. Other properties such as barrier, dynamic mechanical behavior, and thermal properties are also discussed. Finally, the future trends in the rubber/clay nanocomposites are mentioned. POLYM. ENG. SCI., 47:1956–1974, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
Epoxy‐clay nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) epoxy reinforced with 2 wt% of four different types of clay were prepared by high shear mixing (HSM) technique. The resultant nanocomposites were investigated to determine the effects of clay addition and clay types on their mechanical, thermal, and physical properties. The XRD and TEM analyses revealed that good dispersions of nanoclay within the epoxy matrix have been achieved especially for the samples prepared with I.30E clay where a combination of disordered intercalated and exfoliated morphology was observed. The structure of samples synthesized with other types of clay was dominated by intercalated morphologies. The tensile results illustrated that the nanocomposite containing I.30E clay has the best mechanical properties as compared to other nanocomposites. This is mainly due to better dispersion of I.30E nanoclay in the epoxy matrix for this nanocomposite. The increase or decrease in the glass transition temperatures of nanocomposites were found to be dependent on the type of clay used. The effect of clay addition on the barrier properties was examined using water exposure test which demonstrated that the addition of 2% of I.30E and C10A clays resulted in 60% reduction in diffusivity. Noticeable reduction in maximum water uptake was also observed for all nanocomposites. The improvement in these physical properties was attributed to the tortuosity effect, where water molecules have to move around clay layers during diffusion in nanocomposites. POLYM. COMPOS., 36:1998–2007, 2015. © 2014 Society of Plastics Engineer  相似文献   

7.
Montomorillonite was organically modified with three different swelling agents: n‐dodecylamine, 12‐aminolauric acid, and 1,12‐diaminodecane. These organoclays and polyamide 6 (PA6) were blended in a formic acid solution. X‐ray diffraction analysis showed that the clay still retained its layer structure in the PA6/clay nanocomposite. Consequently, these materials were intercalated nanocomposites. The effects of the swelling agent and organoclay content on the crystallization behavior of the PA6/clay nanocomposites were studied with differential scanning calorimetry. The results showed that the position and width of the exothermic peak of the PA6/clay nanocomposites were changed during the nonisothermal crystallization process. The clay behaved as a nucleating agent and enhanced the crystallization rate of PA6.The crystallinity of PA6 decreased with an increasing clay content. Different swelling agents also affected the crystallization behavior of PA6. The effects of the type and content of the swelling agent on the tensile and flexural properties of PA6/clay nanocomposites were also investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1686–1693, 2003  相似文献   

8.
A constitutive model for tensile behavior of PMMA/clay nanocomposite foams was developed in this study. The elastic modulus of the nanocomposites is affected by the form of clays embedded in the polymer matrix. The reinforcing effect by intercalation of the clays and the detrimental effect by clay agglomeration were considered for the determination of the elastic modulus of the nanocomposites. A viscoelastic model was adapted for the tensile behavior of the material. The developed constitutive equation is expressed in terms of clay morphology and material properties. The aspect ratio of clays and the expansion of clay layer spacing in the intercalated clay clusters were proved to play a vital role in the reinforcing mechanism. For the verification of the constitutive model, Poly(methyl‐methacrylate) (PMMA)/clay nanocomposite foams were manufactured by batch process method and their uniaxial tensile test results were compared with theoretical predictions. Compared with the experimental results, the proposed constitutive equation showed agreement with the experimental test results. POLYM. ENG. SCI. 46:1787–1796, 2006. © 2006 Society of Plastics Engineers.  相似文献   

9.
In order to examine the adhesive behavior of a polar polymer between hydrophilic clay layers, the so‐called glue effect, a clay intercalation by an ethylene–vinyl alcohol (EVOH) copolymer, which was capable of strong hydrogen bonding with the silicate surface of clay, was prepared by the melt intercalation technique and compared with a clay nanocomposite containing styrene–acrylonitrile (SAN) copolymer of less polar interaction energy in terms of the morphology and mechanical properties. Although initial penetration of the guest polymer into the gallery of the host clay occurred more rapidly for EVOH because of its strong hydrophilic nature, the dissociation of clay nanoplatelets was better developed for SAN with less polar interaction with clay, well evidencing the fact that the glue effect effectively affects the intercalation behavior of polymer/clay nanocomposites. However, the mechanical properties of the EVOH/clay nanocomposite were superior to those of SAN/clay nanocomposites. Although dissociation of respective silicate layers was poor for EVOH/clay nanocomposites, strong attractive energy stabilizes the interface between inorganic nanoparticles and the polymer matrix much more effectively, resulting in higher mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2749–2753, 2006  相似文献   

10.
Poly(vinyl alcohol) (PVA)/montmorillonite nanocomposites were prepared via solution polymerization. The nanocomposites were formed either by first hydrolyzing poly(vinyl acetate) (PVAc) to PVA and then preparing the PVA/clay, or by initially preparing PVAc/clay and then hydrolyzing the matrix to PVA. The morphology of the nanocomposites was examined by X‐ray diffraction and transmission electron microscopy, which suggested the proper dispersion of silicate layers within the PVA matrix. The influences of some variables including method of preparation, clay content, and time and temperature of saponification on the tensile properties (elastic modulus, stress and elongation at break) of the nanocomposite samples were investigated by using the Taguchi experimental design approach. The results indicated that the tensile properties of the nanocomposites improved as clay content, and the temperature and time of saponification increased. Effect of each factor on the ultimate properties of as prepared nanocomposites are discussed in detail. The analysis of variance (ANOVA) showed that the method of preparation did not influence the ultimate tensile properties of the nanocomposite samples. Thermal degradation of the nanocomposites was studied by thermogravimetric analysis, which showed that their thermal stability was higher than that of virgin polymer. J. VINYL ADDIT. TECHNOL., 19:276–284, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
A series of waterborne polyurethane (WBPU)/clay nanocomposite dispersions containing different amounts of 2,2-dimethylol propionic acid (DMPA) and clay were prepared. It was found that the properties of WBPU/clay nanocomposites were highly dependent on both clay content and DMPA content. The WBPU/clay nanocomposite dispersion with a higher clay content showed a larger mean particle size and a less negative zeta potential. The optimum clay content, which increased with increasing DMPA content, showed maximum tensile strength, Young's modulus and adhesive strength of WBPU/clay nanocomposite. The optimum clay concentrations for WBPU/clay nanocomposite samples containing 3.75, 5.41 and 6.17 wt% DMPA were about 0.5, 1.0 and 2.0 wt%, respectively.  相似文献   

12.
Intercalated and exfoliated low‐density polyethylene (LDPE)/clay nanocomposites were prepared by melt blending with and without a maleated polyethylene (PE‐g‐MAn) as the coupling agent. Their morphology was examined and confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of clay content and dispersion on the cell morphology of nanocomposite foams during extrusion foaming process were also thoroughly investigated, especially with a small amount of clay of 0.05–1.0 wt%. This research shows the optimum clay content for achieving microcellular PE/clay nanocomposite foams blown with supercritical CO2. It is found that < 0.1 wt% of clay addition can produce the microcellular foam structure with a cell density of > 109 cells/cm3 and a cell size of ~ 5 μm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2129–2134, 2007  相似文献   

13.
Ethylene‐vinyl acetate copolymer (EVA)/montmorillonite (MMT) clay nanocomposites with varying degree of intercalation and exfoliation have been prepared using direct melt blending techniques with various degrees of polarity (9, 18, and 28 wt% vinyl acetate [VA]) and two different types of clay modification. Morphological characterization using wide‐angle X‐ray scattering (WAXS) and transmission electron microscopy (TEM) have indicated/confirmed the presence of intercalation and/or a combination of intercalation and exfoliation existing in the nanocomposites. The effects of these (simple intercalation or mixed intercalation/exfoliation) states and the effect of changing matrix polarity (by changing VA wt% content) on the nanocomposite mechanical behavior were studied. There is sufficient evidence from the mechanical studies that 1) the presence of nanoclay can simultaneously improve modulus and strength of the nanocomposites, and 2) the mechanical properties are a combined function of the clay concentration and the nanocomposite morphology (due to the VA wt% and presence of clay). It is shown here that interrelation between the VA wt% content and the clay exfoliation affects the mechanical properties in a way that has a positive and increasing slope with increasing loading of clay. It is shown that a clear understanding of the nanocomposite mechanical properties can be obtained from its morphological analysis. POLYM. ENG. SCI., 45:889–897, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
A simple intercalating agent-free approach to prepare epoxy/montmorillonite (MMT) clay nanocomposite is reported. Through this new approach, no organic modifiers are needed. Thus, the cost for preparing polymer nanocomposites can be significantly reduced. The extent of dispersion and exfoliation of clay in epoxy was characterized by X-ray diffraction and transmission electron microscopy observations. It is found that the MMT clay is well-dispersed in epoxy matrix. The clay platelets in epoxy show a stacked structure with dimensions of about 1–2 μm in length and about 20 nm in thickness. At 4.5 wt% of clay loading level, the flexural modulus of the epoxy nanocomposite is increased by about 35%. No reduction in fracture toughness or glass-transition temperature is observed. The implication of the present finding for commercialization of polymer nanocomposites is discussed. POLYM. ENG. SCI., 47:1708–1714, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), differential scanning calorimetry (DSC), hot-stage polarized optical microscopy (POM), Fourier transform infrared spectroscopy (FT-IR), tensile analysis, dynamic mechanical analysis (DMA) characterisation techniques. Formation of nanocomposite was confirmed by X-ray diffraction (XRD) analysis. A decrease in PEO crystallinity in case of nanocomposite, was confirmed by a decrease in the heat of melting and spherulite size as indicated by DSC and POM studies, respectively. Improvement in tensile properties in all respect was observed for nanocomposites with optimum clay content (12.5 wt%). DMA studies indicate an increase in loss peak temperature and broadening of loss peak as a result of clay intercalation.  相似文献   

16.
Polymer‐clay nanocomposites are well‐known high‐performance materials with a superior tensile modulus. However, in the case of composites with polyimide (PI), additional functions require study because PI is a high‐performance material in itself. Significant enhancement of thermal conductivity, which is closely related to the state of clay dispersion, is expected for a polymer‐clay nanocomposite. In this study, variations in the thermal diffusivity of PI‐clay nanocomposite films prepared by different methods were investigated. The thermal diffusivity of PI‐clay nanocomposite film increased at low clay content only when unmodified clay was used, where the clay morphology was a layered structure dispersed on a nanometer scale. Moreover, the thermal diffusivity could be enhanced by controlling the tensile stress induced by spontaneous shrinkage of the film during thermal imidization. These results demonstrated that the thermal diffusivity of PI‐clay nanocomposite films is significantly affected by the dispersion and/or arrangement states of the clay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
A modified clay was used to prepare poly(L ‐lactic acid)/clay nanocomposite dispersions. X‐ray diffraction and transmission electron microscopy experiments revealed that poly(L ‐lactic acid) was able to intercalate the clay galleries. IR spectra of the poly(L ‐lactic acid)/clay nanocomposites showed the presence of interactions between the exfoliated clay platelets and the poly(L ‐lactic acid). Thermogravimetric analysis and differential scanning calorimetry were performed to study the thermal behavior of the prepared composites. The properties of the poly(L ‐lactic acid)/clay nanocomposites were also examined as functions of the organoclay content. The exfoliated organoclay layers acted as nucleating agents, and as the organoclay content increased, the crystallization temperature increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared using a solution intercalation method. The organoclay (Nanocore I30E) used for nanocomposite synthesis was basically an octadecylammonium salt of montmorillonite clay prepared using an ion exchange method. Nanocomposite‐based solid polymer electrolytes were prepared using LiBF4. The nanocomposite structures were characterised using wide‐angle X‐ray diffraction. The crystallisation behaviour and thermal properties were studied using differential scanning calorimetry. It was found that the crystallinity of the composite electrolytes decreases with increasing clay concentration up to 7.5 wt% and then increases with a further increase in clay concentration. The trend is different from that observed in PEO/clay nanocomposites without lithium salt where the crystallinity gradually decreases with increasing clay concentration. The solid polymer electrolyte samples were evaluated using an alternating current impedance analyser. A considerable increase in room temperature conductivity was observed at the optimum clay concentration. The conductivity decreases beyond the optimum clay concentration. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
A method was described for synthesis of exfoliated poly(styrene-co-methyl methacrylate)/clay nanocomposites through an emulsion polymerization with reactive surfactant, 2-acrylamido-2-methyl-1-propane sulfonic (AMPS) which made the polymer end-tethered on pristine Na-MMT.AMPS widened the gap between clay layers and facilitates comonomers penetrate into clay. Silicate layers affect the composition of comonomers, for example A0.3M10S10T5 showed the elevated composition of MMA end tethered on silicate when compared to the feed ratio and polar methyl methacrylate (MMA) was considered to have the stronger interaction with clay layers than styrene.The exfoliated structure of extracted nanocomposite was confirmed by XRD and transmission electron microscopy. The onset of thermal decomposition for nanocomposites shifted to a higher temperature than that for neat copolymer. The dynamic moduli of nanocomposites increase with clay content. Dynamic storage modulus and complex viscosity increased as the clay content increased. In low frequency region all prepared nanocomposites exhibited apparent low-frequency plateaus in the linear storage modulus. Complex viscosity showed shear-thinning behavior as the clay content increases.  相似文献   

20.
Clay containing polypropylene (PP) nanocomposites were prepared by direct melt mixing in a twin screw extruder using different types of organo‐modified montmorillonite (Cloisite 15 and Cloisite 20) and two masterbatch products, one based on pre‐exfoliated clays (Nanofil SE 3000) and another one based on clay–polyolefin resin (Nanomax‐PP). Maleic anhydride‐grafted polypropylene (PP‐g‐MA) was used as a coupling agent to improve the dispersability of organo‐modified clays. The effect of clay type and clay–masterbatch product on the clay exfoliation and nanocomposite properties was investigated. The effect of PP‐g‐MA concentration was also considered. Composite morphologies were characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscopy (FEG‐SEM), and transmission electron microscopy (TEM). The degree of dispersion of organo‐modified clay increased with the PP‐g‐MA content. The thermal and mechanical properties were not affected by organo‐modified clay type, although the masterbatch products did have a significant influence on thermal and mechanical properties of nanocomposites. Intercalation/exfoliation was not achieved in the Nanofil SE 3000 composite. This masterbatch product has intercalants, whose initial decomposition temperature is lower than the processing temperature (T ~ 180°C), indicating that their stability decreased during the process. The Nanomax‐PP composite showed higher thermal and flexural properties than pure PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号