首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the impacts of surface sulfurization of high‐quality Cu(In1−x,Gax)Se2 (CIGS) thin films deposited by three‐stage process on the film properties and the cell performance were investigated. The CIGS thin films were sulfurized at 550 °C for 30 min using H2S gas. The X‐ray photoelectron spectroscopy analysis revealed that sulfur atoms diffused into the CIGS surface layer and that the valence band minimum was lowered by the film sulfurization. The open circuit voltage (Voc) drastically increased from 0.590 to 0.674 V as a result of the sulfurization process. Temperature‐dependent current–voltage and capacitance–frequency measurements also revealed that interface recombination was drastically decreased by the lowering of the defect's activation energy level at the vicinity of the buffer/CIGS interface after the sulfurization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports a comparative study of Cu(In,Ga)(S,Se)2 (CIGSSe) thin‐film solar cells with CBD‐CdS, CBD‐ZnS(O,OH) and ALD‐Zn(O,S) buffer layers. Each buffer layer was deposited on CIGSSe absorber layers which were prepared by sulfurization after selenization (SAS) process by Solar Frontier K. K. Cell efficiencies of CBD‐CdS/CIGSSe, CBD‐ZnS(O,OH)/CIGSSe and ALD‐Zn(O,S)/CIGSSe solar cells exceeded 18%, for a cell area of 0.5 cm2. The solar cells underwent a heat‐light soaking (HLS) post‐treatment at 170 °C under one‐sun illumination in the air; among the three condtions, the ALD‐Zn(O,S)/CIGSSe solar cells showed the highest cell efficiency of 19.78% with the highest open‐circuit voltage of 0.718 V. Admittance spectroscopy measurements showed a shift of the N1 defect's energy position toward shallower energy positions for ALD‐Zn(O,S)/CIGSSe solar cells after HLS post‐treatment, which is in good agreement with their higher open‐circuit voltage and smaller interface recombination than that of CBD‐ZnS(O,OH)/CIGSSe solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Thin film solar cells based on polycrystalline Cu(In,Ga)Se2 were prepared by elemental co‐evaporation using modified three‐stage processes on soda lime glass substrates at a low substrate temperature of 450°C intended for application on polyimide foils. The growth rates in the different stages of the growth process were varied, and it was observed that the final composition profile and structural quality of the film are mainly determined by the growth rate in the third stage. Application of high growth rates in the second stage was found to have no significant impact on layer morphology and gallium grading profile, which was confirmed by scanning electron microscopy, secondary ion mass spectroscopy, and x‐ray diffraction measurements. On the other hand, scanning electron microscopy cross sections revealed that high growth rates in the third stage lead to a fine‐grained structure toward the surface as well as smaller grains toward the back contact. Secondary ion mass spectroscopy and x‐ray diffraction measurements of such layers revealed a pronounced gallium grading profile, while Raman spectroscopy showed strong occurrence of group III‐rich phases in the near‐surface region. The final device performance was found to deteriorate by about 10% relative to the baseline process efficiency when growth rates of up to 500 nm min−1 were applied in the second stage or 600 nm min−1 in the third stage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Cu(In,Ga)Se2 (CIGS) thin films co‐evaporated by 1‐stage, 2‐stage, and 3‐stage processes have been studied by spectroscopic ellipsometry (SE). The disappearance of a Cu2‐xSe optical signature, detected by real time SE during multistage CIGS, has enabled precise endpoint control. Band gap energies determined by SE as depth averages show little process variation for fixed [Ga]/([In] + [Ga]) atomic ratio, whereas their broadening parameters decrease with increasing number of stages, identifying successive grain size enhancements. Refined SE analysis has revealed band gap profiling only for 3‐stage CIGS. Solar cells incorporating these absorbers have yielded increased efficiencies in correlation with phase control, grain size, and band gap profiling. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Reduction of the absorber thickness combined with deposition on a flexible substrate is a technically viable strategy to allow lower cost manufacturing of Cu(In,Ga)Se2 solar modules. Flexible plastic substrates, however, require a low‐temperature deposition process and appropriate control of the band gap grading for achieving high efficiencies. In this work, we developed solar cells on polyimide films using evaporated Cu(In,Ga)Se2 absorbers with thickness of 0.8–1.3 µm. The double Ga‐grading profile across the absorber thickness was modified by varying the maximum Cu excess at the end of the second stage or by adapting the In and Ga evaporation flux profiles during the growth process. By minimizing the Cu excess during the intermediate stage of the growth process, no loss in open circuit voltage and fill factor is observed compared with a device having a thicker absorber. Efficiency of 16.3% was achieved for cells with an absorber thickness of 1.25 µm. Insufficient absorption of photons in the long wavelength region is mainly responsible for current loss. By changing the In and Ga evaporation profiles, the shape and position of the Ga notch were effectively modified, but it did not lead to a higher device performance. Modifications of the Ga compositional profile could not help to significantly reduce absorption losses or increase charge carrier collection in absorbers with thickness below 1 µm. Changes of open circuit voltage and fill factor are mostly related to differences in the net acceptor density or the reverse saturation current rather than changes of the double Ga grading. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, we investigate the effect of ageing Mo‐coated substrates in a dry and N2 flooded cabinet. The influence was studied by preparing Cu(In,Ga)Se2 solar cells and by comparing the electrical performance with devices where the Mo layer was not aged. The measurements used for this study were current–voltage (J‐V), external quantum efficiency (EQE), secondary ion mass spectroscopy (SIMS) and capacitance–voltage (C‐V). It was concluded that devices prepared with the aged Mo layer have, in average, an increase of 0.8% in efficiency compared with devices that had a fresh Mo layer. Devices with aged Mo exhibited a nominal increase of 12.5 mV of open circuit voltage, a decrease of 1.1 mA/cm−2 of short circuit current and a fill factor increase of 2.4%. Heat treatment of fresh Mo layers in oxygen atmosphere was also studied as an alternative to ageing and was shown to provide a similar effect to the aged device's performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A ZnO nanorod antireflective coating has been prepared on Cu(In,Ga)Se2 thin film solar cells. This coating leads to a decrease of the weighted global reflectance of the solar cells from 8.6 to 3.5%. It boosts the solar cells short‐circuit current up to 5.7% without significant effect on their open‐circuit voltage and fill factor (FF), which is comparable to a conventional optimized single layer MgF2 antireflective coating. The ZnO nanorod antireflective coating was electrochemically prepared from an aqueous solution at 80°C. The antireflective capability of ZnO nanorod arrays (ZNAs) may be further improved by optimization of growth conditions and their geometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Development of a Cu(In,Ga)Se2 thin film solar cell on a polyimide film with a conversion efficiency of 17.1%, measured under standard test conditions at the European Solar Test Installation (ESTI) of the Joint Research Centre (JRC) of the European Commission, Ispra, is reported. The drastic improvement from the previous record of 14.1% efficiency is attributed to a more optimized compositional grading, better structural and electronic properties of the absorber layer as well as reduced reflection losses. Basic film and device properties, which led to the improvement in the efficiency record of flexible solar cells are presented for the new process and compared to the old process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Highly efficient thin film solar cells based on co‐evaporated Cu(In,Ga)Se2 (CIGS) absorbers are typically grown with a [Ga]/([Ga] + [In]) (GGI) gradient across the thickness and a Cu‐poor composition. Upon increasing the Cu content towards the CIGS stoichiometry, lower defect density is expected, which should lead to increased absorption in the near‐infrared (NIR), diffusion length and carrier collection. Further, optimization of the GGI grading is expected to increase the NIR response. In this contribution [Cu]/([In] + [Ga]) (CGI) values are increased by shortening the deposition stage after the first stoichiometric point. In order to obtain comparable Ga contents at the interface for proper band alignment, the front GGI gradings were actively modified. With a relative CGI increase of 7%, we observe an increased photocurrent, originating from an improved NIR external quantum efficiency response. By characterizing the modified absorber properties by reflection‐transmission spectroscopy, we attribute the observed behavior to changes in the optical properties rather than to improved carrier collection. Cu‐dependent modifications of the NIR‐absorption coefficients are likely to be responsible for the variations in the optical properties, which is supported by device simulations. Adequate re‐adjustments of the co‐evaporation process and of the alkali‐fluorides post‐deposition treatments allow maintaining Voc and FF values, yielding an overall increase of efficiency as compared to a reference baseline. © 2016 The Authors. Progress in Photovoltaics : Research and Applications published by John Wiley & Sons Ltd.  相似文献   

10.
We report a new state of the art in thin‐film polycrystalline Cu(In,Ga)Se2‐based solar cells with the attainment of energy conversion efficiencies of 19·5%. An analysis of the performance of Cu(In,Ga)Se2 solar cells in terms of some absorber properties and other derived diode parameters is presented. The analysis reveals that the highest‐performance cells can be associated with absorber bandgap values of ∼1·14 eV, resulting in devices with the lowest values of diode saturation current density (∼3×10−8 mA/cm2) and diode quality factors in the range 1·30 < A < 1·35. The data presented also support arguments of a reduced space charge region recombination as the reason for the improvement in the performance of such devices. In addition, a discussion is presented regarding the dependence of performance on energy bandgap, with an emphasis on wide‐bandgap Cu(In,Ga)Se2 materials and views toward improving efficiency to > 1;20% in thin‐film polycrystalline Cu(In,Ga)Se2 solar cells. Published in 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The remarkable potential for inexpensive upscale of solution processing technologies is expected to enable chalcogenide‐based photovoltaic systems to become more widely adopted to meet worldwide energy needs. Here, we report a thin‐film solar cell with solution‐processed Cu(In,Ga)(S,Se)2 (CIGS) absorber. The power conversion efficiency of 15.2% is the highest published value for a pure solution deposition technique for any photovoltaic absorber material and is on par with the best nonvacuum‐processed CIGS devices. We compare the performance of our cell with a world champion vacuum‐deposited CIGS cell and perform detailed characterization, such as biased quantum efficiency, temperature‐dependent electrical measurement, time‐resolved photoluminescence, and capacitance spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Among different process routes for Cu(In,Ga)Se2 (CIGS) solar cells, sufficient Se supply is commonly required to obtain high‐quality CIGS films. However, supplying extra Se increases the cost and the complexity. In this work, we demonstrate that extra Na incorporation can substantially increase efficiency of Se‐deficient CIGS solar cells, fabricated by sputtering from a quaternary CIGS target without extra Se supply, from 1.5% to 11.0%. The Se‐deficient CIGS device without extra NaF reveals a roll‐over I–V curve at room temperature as well as significantly reduced Jsc and fill factor at low temperatures. The electrical characteristics of Se‐deficient CIGS films are well explained and modeled by the low p‐type doping due to high density of compensating donors and the presence of deep defects possibly originating from the anti‐bonding levels of Se vacancies. The significant improvement after extra Na incorporation is attributable to the Na‐induced passivation of Se vacancies and the increased p‐type doping. Our result suggests that extra Na addition can effectively compensate the Se deficiency in CIGS films, which provides a valuable tuning knob for compositional tolerance of absorbers, especially for the Se‐deficient CIGS films. We believe that our findings can shine light on the development of novel CIGS processes, distinct from previous ones fabricated in Se‐rich atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Compared with rigid glass, manufacturing of Cu(In,Ga)Se2 (CIGS) solar cells on flexible stainless steel (SS) substrates has potential to reduce production cost because of the application of roll‐to‐roll processing. Up to now, high‐efficiency cells on SS could only be achieved when the substrate is coated with a barrier layer (e.g. SiOx or Si3N4) for hindering the diffusion of impurities, especially Fe, into the CIGS layer. In this paper, the effect of these impurities on the electronic transport properties of the device is investigated. Using admittance spectroscopy, the presence of a deep defect level at around 320 meV is observed, which deteriorates the efficiency of the solar cells. Furthermore, it is shown that reducing substrate temperature during CIGS deposition is an effective alternative to a barrier layer for reducing diffusion of detrimental Fe impurities into the absorber layer. By applying a CIGS growth process for deposition at low substrate temperatures, an efficiency of 17.7%, certified by Fraunhofer Institute ISE, Freiburg, was achieved on Mo/Ti‐coated SS substrate without an additional metal‐oxide or metal‐nitride impurity diffusion barrier layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Fabrication of Zn1−xMgxO films by atomic layer deposition (ALD) has been studied for use as buffer layers in Cu(In,Ga)Se2 (CIGS)‐based solar cell devices. The Zn1−xMgxO films were grown using diethyl zinc, bis‐cyclopentadienyl magnesium and water as precursors in the temperature range from 105 to 180°C. Single‐phase ZnO‐like films were obtained for x < 0·2, followed by a two phase region of ZnO‐ and MgO‐like structures for higher Mg concentrations. Increasing optical band gaps of up to above 3·8 eV were obtained for Zn1−xMgxO with increasing x. It was found that the composition of the Zn1−xMgxO films varied as an effect of deposition temperature as well as by increasing the relative amount of magnesium precursor pulses during film growth. Completely Cd‐free CIGS‐based solar cells devices with ALD‐Zn1−xMgxO buffer layers were fabricated and showed efficiencies of up to 14·1%, which was higher than that of the CdS references. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
在含有ZnSO4,SC(NH2)2,NH4OH的水溶液中采用CBD法沉积ZnS薄膜,XRF和热处理前后的XRD测试表明,ZnS沉积薄膜为立方相结构,薄膜含有非晶态的Zn(OH)2.光学透射谱测试表明,制备的薄膜透过率(λ>500nm)约为90%,薄膜的禁带宽度约为3.51eV.ZnS薄膜沉积时间对Cu(In,Ga)Se2太阳电池影响显著,当薄膜沉积时间在25~35min时,电池的综合性能最好.对比了不同缓冲层的电池性能,采用CBD-CdS为缓冲层的电池转换效率、填充因子、开路电压稍高于CBD-ZnS为缓冲层的无镉电池,但无镉电池的短路电流密度高于前者,两者转换效率相差2%左右.ZnS可以作为CIGS电池的缓冲层,替代CdS,实现电池的无镉化.  相似文献   

16.
17.
Texture and morphology variations in co‐evaporated (In,Ga)2Se3 and Cu(In,Ga)Se2 (CIGS) films grown with various Se source conditions during growth were studied. The Se species of simply evaporated, large molecular Se (E‐Se, low‐sticking coefficient), and RF‐plasma cracked atomic Se (R‐Se, high sticking coefficient) were used in the present work. (In,Ga)2Se3 precursor films, which were prepared during the first stage of CIGS film growth by the three‐stage process, showed systematic variations in texture and Na distribution profile with varying evaporative Se (E‐Se) flux. The properties of CIGS films and solar cells also showed systematic variations, and the open‐circuit voltage (Voc) and fill factor were found to be especially sensitive to the E‐Se flux. R‐Se grown (In,Ga)2Se3 precursor films featured granular morphology with strong (105) and (301) peaks in the diffraction pattern, and the texture was very similar to an E‐Se grown film fabricated with a Se to group III metal (In + Ga) flux ratio (P[Se]/[In + Ga]) of about 6, although the nominal P[Se]/[In + Ga] used for an R‐Se source was very small and less than 0.5. The R‐Se grown CIGS films displayed, however, highly dense surfaces and larger grain sizes than E‐Se grown CIGS films. The controllability of film morphology and the Na diffusion profile in (In,Ga)2Se3 and CIGS films with various Se source conditions are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we show that a reactive co‐sputtering process using metallic CuGa and In targets; an Ar:H2Se atmosphere is well suited for the deposition of photoactive Cu(In,Ga)Se2 (CIGSe) absorber layers for thin‐film solar cells in a single process step. The achievement of single‐phase and well‐crystallized layers is thereby no major problem if a sufficiently high H2Se content and substrate temperatures in the range of 400–500 °C are used. However, in order to achieve the desired Cu‐poor film stoichiometry, which is crucial for the device performance, it has to be considered already that, at moderate substrate temperatures in the range of 400–500 °C, indium has a strong tendency to re‐evaporate from the film surface if the film composition is Cu‐poor. If excess indium is supplied, this effect can lead to a self‐adjustment of the film composition. This allows a very wide process window in a one‐stage process concerning the supply ratio from the two targets of [Cu]/([In] + [Ga])supply ≈ 0.35–0.8. However, the maximum efficiencies achievable with such a process are limited to 11.7% because an adequate Cu‐poor composition can only be achieved with significant Cu‐poor conditions, which allow only a low material quality. By using an improved process with an intermediate Cu‐rich composition and a final Cu‐poor stage, the absorber quality could be significantly improved; efficiencies of up to 14.3% have been achieved with CIGSe films prepared on Na‐doped Mo back contacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
在含有ZnSO4,SC(NH2)2,NH4OH的水溶液中采用CBD法沉积ZnS薄膜,XRF和热处理前后的XRD测试表明,ZnS沉积薄膜为立方相结构,薄膜含有非晶态的Zn(OH)2.光学透射谱测试表明,制备的薄膜透过率(λ>500nm)约为90%,薄膜的禁带宽度约为3.51eV.ZnS薄膜沉积时间对Cu(In,Ga)Se2太阳电池影响显著,当薄膜沉积时间在25~35min时,电池的综合性能最好.对比了不同缓冲层的电池性能,采用CBD-CdS为缓冲层的电池转换效率、填充因子、开路电压稍高于CBD-ZnS为缓冲层的无镉电池,但无镉电池的短路电流密度高于前者,两者转换效率相差2%左右.ZnS可以作为CIGS电池的缓冲层,替代CdS,实现电池的无镉化.  相似文献   

20.
Single‐layered Cu‐In‐Ga‐Se precursors were fabricated by one‐step sputtering of a single quaternary Cu(In,Ga)Se2 (CIGS) chalcogenide target at room temperature, followed by post selenization using Se vapor obtained from elemental Se pellets. The morphological and structural properties of both as‐deposited and selenized films were characterized by X‐ray diffraction (XRD), Raman spectroscope and scanning electron microscope (SEM). The precursor films exhibited a chalcopyrite structure with a preferential orientation in the (112) direction. The post‐selenization process at high‐temperature significantly improved the quality of the chalcopyrite CIGS. The CIGS layers after post‐selenization were used to fabricate solar cells. The solar cell had an open‐circuit voltage Voc of 0.422 V, a short‐circuit current density J = 24.75 mA, a fill factor of 53.29%, and an efficiency of 7.95%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号