首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
齐新霞  贾琦 《特殊钢》2022,43(4):1-4
以Q460钢(/%:0.17C,0.35Si,1.5Mn,0.020P,0.020S,0.020Nb,0.075V)3 250 mm×150 mm宽板坯为研究对象,采用ANSYS软件建立凝固传热模型,研究拉坯速度、比水量、过热度等工艺参数对铸坯凝固过程的影响。模拟结果表明:拉坯速度每增大0.10 m/min,矫直段铸坯表面温度升高36.5℃,出坯温度升高50℃,坯壳厚度减薄2.4 mm,液心长度增加1.2 m;每增加1℃的过热度,矫直点铸坯上表面中心温度增加1.73℃,延长液芯长度0.11 m;因此,拉坯速度是影响铸坯质量的关键。生产应用表明,3 250 mm×150 mm板坯拉速1.20~1.25 m/min,过热度15~20℃时板坯表面矫直温度大于950℃,降低了铸坯中心疏松和偏析,表面质量显著提高。  相似文献   

2.
在考虑二冷边界换热的条件下,建立了与厚板坯连铸机相适应的传热数学模型。用远红外测温仪测试X65管线钢230 mm×1650 mm铸坯表面温度,实验结果同模拟结果吻合较好。应用数学模型,对不同拉速下管线钢的连铸凝固过程进行了仿真计算,分析了拉速对出结晶器坯壳厚度、铸坯表面温度和液芯长度的影响,得出在给定的二冷条件下,为得到合理的铸坯表面温度,管线钢的拉速应为0.9~1.2m/min。  相似文献   

3.
《特殊钢》2016,(4)
用二维切片跟踪铸坯凝固传热的方法建立了X80管线钢(/%:0.04C,1.85Mn,0.25Si,0.006P,0.003S,0.30Ni,0.21Mo,0.06Nb,0.02V)238 mm×1650 mm板坯连铸过程中垂直拉坯方向传热的数学模型,通过ANSYS对X80管线钢连铸过程中温度场及坯壳厚度的渐变进行计算,得出拉速1.2mm/min时,出结晶器坯壳厚为18.14 mm,铸坯液芯长22.58 m。凝固壳厚度计算值射钉测试结果的相对误差≤2.5%,凝固末端位置的相对误差为0.68%。分析了过热度(25~55℃),拉速(1.2~1.3m/min)和二冷水量(79.2~96.8 m~3/h)对切片各点温度和凝固末端位置的影响。结果表明,增大拉速、减小二冷配水量,连铸坯表面温降变慢,凝固末端位置距离结晶器液面越远,凝固时间变长;该X80管线钢板坯连铸最佳工艺参数为钢水过热度35℃,拉速1.2 m/min和二冷配水量88m~3/h。  相似文献   

4.
珠钢CSP薄板坯凝固层厚度研究   总被引:3,自引:0,他引:3  
结合珠钢生产实际情况,采用射钉法来测定二冷区不同位置的凝固坯壳厚度,试验结果表明,4.8m/min拉速下铸坯液芯长度为4820mm,4.5m/min拉速下铸坯液芯为4490mm,两种拉速下连铸坯坯壳厚度的实际测量结果与凝固传热模型计算结果一致。整个凝固过程坯壳厚度生长符合平方根定律。  相似文献   

5.
为控制线材轧制用连铸小方坯质量,应用数值模拟软件对鞍钢股份有限公司炼钢总厂120 mm×120 mm小方坯连铸凝固过程进行模拟。模拟结果表明,在合理的冷却制度下,过热度低于35℃,拉速约为3.0 m/min的条件下,可以将结晶器出口坯壳厚度、铸坯液芯长度和铸坯表面温度控制在合适的范围内,并防止铸坯表面及内部产生缺陷、保证浇铸安全。  相似文献   

6.
用二维切片跟踪铸坯凝固传热的方法建立了X80管线钢(/%:0.04C,1.85Mn,0.25Si,0.006P,0.003S,0.30Ni,0.21Mo,0.06Nb,0.02V)238 mm×1650 mm板坯连铸过程中垂直拉坯方向传热的数学模型,通过ANSYS对X80管线钢连铸过程中温度场及坯壳厚度的渐变进行计算,得出拉速1.2mm/min时,出结晶器坯壳厚为18.14 mm,铸坯液芯长22.58 m。凝固壳厚度计算值射钉测试结果的相对误差≤2.5%,凝固末端位置的相对误差为0.68%。分析了过热度(25~55℃),拉速(1.2~1.3m/min)和二冷水量(79.2~96.8 m3/h)对切片各点温度和凝固末端位置的影响。结果表明,增大拉速、减小二冷配水量,连铸坯表面温降变慢,凝固末端位置距离结晶器液面越远,凝固时间变长;该X80管线钢板坯连铸最佳工艺参数为钢水过热度35℃,拉速1.2 m/min和二冷配水量88m3/h。  相似文献   

7.
在分析37Mn5钢(/%:0.34~0.39C,0.20~0.35Si,1.25~1.50Mn)凝固特性的基础上通过用ANSYS软件建立连铸圆坯凝固热-力耦合数学模型,对Φ210 mm连铸圆坯凝固过程进行模拟,分析了40 t中间包,拉速1.4 m/min,浇铸温度1531℃时,二冷水比水量0.58~0.78 L/kg和各段配置对铸坯表面温度、坯壳厚度、液芯长度和表面应力的影响。模拟结果表明,比水量每增加0.1 L/kg,铸坯表面约下降18℃,试验比水量变化对出口坯壳厚度、液芯长度和表面应力影响不显著,但原工艺配水量0.68 L/kg下二冷0段和1段之间空冷部位出现高达185℃急速回温,最大应力达6.41×107Pa,通过保持配水量0.68 L/kg不变,调整各段配水量使0~1段间回温降至123℃,最高应力降至4.53×107Pa,铸坯裂纹基本消失,表面质量显著改善。  相似文献   

8.
根据钢厂新建Φ600 mm圆坯连铸机的主要技术参数,建立柱坐标一维非稳态连铸坯凝固传热数学模型,运用有限差分法求解并编制相关程序,分析拉速、过热度、冷却强度对铸坯温度的影响,实现在给定水量下连铸坯温度场的计算。浇铸Φ500 mm轴承钢GCr15SiMn计算得出拉速每提高0.1 m/min,出结晶器处凝固坯壳厚度减薄约7.9 mm,凝固终点延长6.7 m。  相似文献   

9.
以某钢厂GCr15钢大方坯为研究对象,采用ProCAST软件建立凝固数学模型,研究了过热度、拉速和比水量对大方坯凝固过程的影响,并通过对铸坯中心固相率及液芯长度的分析,确定了最佳末端电磁搅拌位置,并优化了拉速。研究结果表明:过热度对铸坯凝固影响最小,随着过热度增加,铸坯表面温度升高,铸坯液芯长度和液相区长度均随之增加,而两相区长度则随之减小;拉速对铸坯凝固影响最大,拉速提高,铸坯表面温度、液芯长度、两相区长度、液相区长度均增大;比水量增加,铸坯表面温度降低,液芯长度减小;当比水量为0.29 L/kg时,过热度应控制在15~35℃,拉速需控制在0.46~0.49m/min,且最佳拉速为0.48 m/min。  相似文献   

10.
通过大型通用有限元软件ANSYS建立铸坯凝固过程有限元仿真分析模型,在拉速0.25~0.35m/min,钢水过热度20℃的条件下,对20钢Φ中600mm和40Cr钢Φ500 mm圆坯连铸过程进行了计算和分析,得出距液面0~32 m时铸坯表面温度变化曲线。计算结果表明,当20钢Φ600 mm圆坯的拉速为0.3 m/min时,结晶器出口坯壳厚度为30.9 mm,结晶器出口铸坯温度为1050℃,二冷区表面最低温度978℃铸坯在距液面19.71 mm处完全凝固。Φ600 mm圆坯连铸机20钢生产实践表明,拉速0.25 m/min,结晶器出口铸坯表面温度为1048℃,二冷区表面最低温度为918℃,与模拟结果相似。  相似文献   

11.
 以某钢厂圆坯连铸机为研究对象,建立了连铸坯凝固传热模型。在不同拉速下对280 mm断面圆坯二次冷却过程进行仿真优化,确定了16MnNb钢合适的二冷制度。根据仿真结果,在最小工作拉速(0.9 m/min)下,矫直点处铸坯内弧表面中心温度为947 ℃,有效避开了铸坯的二次低延性区。在最大工作拉速(1.2 m/min)下,铸坯出结晶器时,其凝固坯壳厚度为19 mm,二冷初期产生漏钢等质量问题的可能性较小。不同拉速下,横断面温度场分布均匀。经低倍检测发现,铸坯表面及内部质量良好,无裂纹、疏松、缩孔等质量缺陷。  相似文献   

12.
 H型钢由异型坯轧制生产,异型坯形状独特,连铸生产中横向表面温度极不均匀,应力、应变状况复杂,对冶炼和连铸工艺均有较高要求。SS400异型坯生产中钢水未经精炼处理,部分炉次钢水碳含量处于包晶反应严重的碳含量范围,硫、磷含量较高,w(Mn)/w(S)较低,总氧和大型夹杂物含量较高;浸入式水口为直孔型,结晶器中上升流股较弱,坯壳生长不均匀;拉速较慢,并采用双水口浇铸,结晶器中上升流股更弱,弯月面处钢水供热不足,处于低温状态,保护渣也因温度低而熔融欠佳;二冷强度偏高,矫直辊前异型坯腹板表面温度处于低温脆性区,因此轧制成品H型钢的表面裂纹较多。  相似文献   

13.
H型钢表面裂纹成因分析   总被引:2,自引:0,他引:2  
刘建华  包燕平  孙维  黄社青  周杰 《钢铁》2006,41(8):37-40
H型钢由异型坯轧制生产,异型坯形状独特,连铸生产中横向表面温度极不均匀,应力、应变状况复杂,对冶炼和连铸工艺均有较高要求。SS400异型坯生产中钢水未经精炼处理,部分炉次钢水碳含量处于包晶反应严重的碳含量范围,硫、磷含量较高,w(Mn)/w(S)较低,总氧和大型夹杂物含量较高;浸入式水口为直孔型,结晶器中上升流股较弱,坯壳生长不均匀;拉速较慢,并采用双水口浇铸,结晶器中上升流股更弱,弯月面处钢水供热不足,处于低温状态,保护渣也因温度低而熔融欠佳;二冷强度偏高,矫直辊前异型坯腹板表面温度处于低温脆性区,因此轧制成品H型钢的表面裂纹较多。  相似文献   

14.
  基于二冷区传热的基本原理和异型坯凝固传热特点,建立了异型坯凝固传热模型;通过现场测试铸坯表面温度和坯壳厚度对数学模型进行修正,得到了异型坯连铸过程中表面温度随时间变化的规律;同时,对原有二冷制度进行了评估,提出了合理的二冷改进措施。通过二冷工艺的优化,提高了二次冷却的均匀性,铸坯表面和内部质量大幅度提高。  相似文献   

15.
陈伟  常新年  杨改彦  王博  李耀  马国金 《炼钢》2022,38(1):56-62
针对薄板坯在凝固过程中容易出现铸坯裂纹、疏松、缩孔等质量问题,以某厂生产的高拉速薄板坯为研究对象,通过建立传热凝固有限元和元胞自动机相结合的CAFE模型,基于ProCAST平台开展凝固传热全过程数值计算,探究不同拉速下的结晶器末端坯壳生长情况、不同拉速对凝固传热过程的温度场和三维凝固组织的影响.结果表明,在不同的拉速下...  相似文献   

16.
Nb 微合金化钢连铸异型坯表面温度分析   总被引:3,自引:1,他引:2  
采用CIT-M型红外测温线性化传感器测定了马钢Nb 微合金化钢 SM490YB(%:0.09~0. 13C, 1.35~1.50Mn,0.04~0.06Nb)异型坯在连铸过程中的表面温度,结果表明异型坯横向表面温度不均匀;在二冷 区测量位置和矫直区,铸坯表面温度基本处于SM490YB钢的低温脆性区(650~750℃);在二冷2段由于支撑 棍间间隔喷水冷却,温度回复大于冶金规则允许的最大限度100 ℃/m。SM490YB异型坯浇铸应采用弱冷工 艺,同时调整冷却喷嘴的布置,以提高异型坯表面质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号