首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal conductivities of silicone rubber filled with ZnO in a wide volume range were measured in order to study the effect of formed conductive particle chains on thermal conductivities. With the increasing of content of ZnO particles in silicone rubber, the amount of formed conductive chains increases and the conductive chains tend linearly to increase the thermal conductivity of the composite. The experimental results obtained were also analyzed using the Nielsen and Agari models to explain the effect of ZnO filler on the formation of thermal conductive networks. Thermal conductivities of a polymer filled with high volume content of particles evidently increased with the adding of small size fillers. The scanning electron microscopy (SEM) showed that percolation threshold has been reached at 31.4 vol% ZnO filler loading, and the hybrid fillers are more densely packed than single fillers in the silicone rubber matrix. There occurs a positive temperature coefficient (PTC) phenomenon in thermal resistance in composites of silicone rubber filled with ZnO. POLYM. COMPOS., 28:125–130, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
高导热室温硫化硅橡胶和硅脂   总被引:19,自引:7,他引:19  
研究了Al2O3、SiC两类导热填料以及填料的粒径分布对室温硫化硅橡胶和硅脂的导热性能和粘度的影响:发现当粒径分布适当时,可得到导热系数高、粘度低的室温硫化导热硅橡胶及导热硅脂。  相似文献   

3.
石墨及其表面改性对硅橡胶导热性能的影响   总被引:3,自引:0,他引:3  
用双辊混炼机将导热填料分散到聚甲基乙烯基硅氧烷中,再配以增强剂、硫化剂等,经模压硫化制得导热硅橡胶。研究了导热填料种类、石墨的表面改性和用量以及石墨与炭黑的复配对硅橡胶导热性和力学性能的影响。结果表明,在用量相同的情况下,导热填料的导热系数越高,其填充硅橡胶的导热性越好,且硅橡胶的导热系数随导热填料用量的增加而增大。石墨的表面改性改善了石墨与硅橡胶的界面相容性,使硅橡胶的力学性能和导热性都得到提高。不同粒径及颗粒形态的炭黑与石墨复合可改善硅橡胶的导热性和力学性能,导热硅橡胶的拉伸强度和扯断伸长率随复合填料中炭黑用量的增加而提高,当石墨与炭黑质量比为25/5时,硅橡胶的导热系数最高,综合性能较好。  相似文献   

4.
选用合适粒径的氮化铝和氧化铝为混杂导热填料、使用自制的硅烷低聚物为表面处理剂,以溶液插层法对混杂导热填料进行表面改性;然后与甲基苯基硅油混合制备了LED用低热阻导热硅脂。研究了导热填料的种类、粒径、表面处理剂种类及用量对导热硅脂的热导率和黏度的影响。采用LED灯作为实际测试平台表征了导热硅脂的导热性能。结果表明,当填料总质量分数为90.9%,粒径为5μm的氮化铝与粒径为1μm的氧化铝作混合填料且质量比为2.8∶1时,导热硅脂的热导率和黏度有较好的平衡;使用填料质量0.5%的硅烷低聚物对氮化铝和氧化铝混合填料进行表面处理有较好的处理效果;自制10号硅脂样品的黏度(25℃)为174 Pa·s,热阻为1.94℃/W,热导率为4.31 W/m·K。  相似文献   

5.
An elastomeric thermal pad with a thermal conductivity of 1.45 W/m K, needed for the heat dissipation of microelectronics, was obtained with hybrid alumina of different particle sizes as a filler and silicone rubber (vinyl‐end‐blocked polymethylsiloxane) as the matrix. The effects of the amount, particle size, and mixing mass ratio of the filler particles on the thermal conductivity and mechanical properties of silicone rubber were investigated. The results indicated that the thermal conductivity of the rubber filled with larger particles was superior to that of the rubber filled with the smaller grain size, and the rubber incorporated with a mixture of hybrid particles at a preferable mass ratio exhibited higher thermal conductivity than the rubber for which a filler with only a single particle size was used. In addition, the surface treatment of the hybrid filler with 3‐methacryloyloxypropyltrimethoxysilane could increase the thermal conductivity of the composite rubber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1312–1318, 2007  相似文献   

6.
分别采用氮化硼和氮化硼/碳纳米管(CNTs)复配物制备导热乙烯基聚二甲基硅氧烷(PDMS)材料,并对其导热性能进行研究。结果表明:随着氮化硼和CNTs用量的增大,材料的热导率和热扩散系数逐渐增大;氮化硼用量足够大时,能够形成导热通路进而促进填料网络的形成;CNTs在填料中将氮化硼粒子之间形成的平面结构连接起来,从而形成三维网络结构;填料越多,形成的导热网络结构越强;氮化硼在网络中起主要作用,CNTs起到辅助增强的作用。  相似文献   

7.
复合绝缘导热胶粘剂研究   总被引:6,自引:4,他引:6  
以增韧的酚醛环氧树脂为基体树脂,氮化铝、氮化硼、氧化铝混杂粒子为导热填料制备了-新型绝缘导热胶粘剂。研究了填料用量对胶粘剂热导率、热阻、介电常数、体积电阻率等性能的影响,发现填料用量为40%时胶粘剂的热导率为O.99 W/mK,热阻为0.70℃/W,介电常数6,体积电阻率4.6×1012Ω·cm,20℃、200℃、250℃下的剪切强度分别为13.0MPa、10.0MPa、5.65MPa。研究结果表明该胶具备良好的电绝缘及力学性能,可以长期在150℃温度下使用,与不加导热填料的相同胶粘剂相比,具有良好的导热能力。  相似文献   

8.
以聚砜改性环氧树脂为基体,通过高温模压制备了环氧树脂/玻璃纤维/氮化硼复合材料,研究了不同粒径及不同氮化硼导热粒子用量对复合材料导热性能、力学性能和电性能的影响。结果表明,大粒径粒子有利于复合材料力学性能的提高,小粒径有利于导热性能的提高;随着氮化硼用量的增加,复合材料的导热性能升高,力学性能呈现先增后降趋势,当氮化硼用量为10%(质量分数,下同)时,复合材料的冲击强度和弯曲强度均达到最佳,当氮化硼用量为20%时,复合材料仍保持较好的电性能。  相似文献   

9.
In this study, we constructed hybrid three-dimensional (3D) filler networks by simply incorporating a relatively low content of one-dimensional carbon nanotubes (CNTs; 0.0005–0.25 vol %) and a certain content of two-dimensional boron nitride (BN; 30 phr) in a silicone rubber (SIR) matrix. As indicated by transmission electron microscopy observation, flexible CNTs can serve as bridges to connect BN platelets in different layers to form hybrid 3D thermally conductive networks; this results in an increase in thermally conductive pathways, and the isolation between CNTs can prevent the formation of electrically conductive networks. Compared to the SIR–BN composite with the same BN content, the SIR–BN–CNT composites exhibited improved thermal conductivity, slightly increased volume resistivity, and comparable breakdown strength without a largely decreased flexibility. When 0.25 vol % CNTs were incorporated, the SIR–BN–CNT composite exhibited 75 and 25% higher thermal conductivities relative to the neat SIR and SIR–BN composite with 30 phr BN, respectively, and a thermal conductivity that was even comparable to SIR–BN composite with 40 phr BN. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46929.  相似文献   

10.
以甲基乙烯基硅橡胶为基体树脂,不同粒径碳化硅(SiC)和碳纤维(CF)复配作为填料,经开炼后模压硫化成型制得高导热复合材料。利用热流法导热系数测试仪(DRL-II)、扫描电子显微镜(SEM)对复合材料的导热性能、微观结构、力学性能进行了表征。结果表明:碳化硅和碳纤维能够均匀的分散在基体树脂中,不同粒径的碳化硅复配能使复合材料的导热性能进一步提高,导热系数达到1.28w/(m.k)。加入碳纤维不仅能使基体内部形成串联的导热网链,进一步提高基体树脂的导热性能,使复合材料的导热系数达到1.88w/(m.k),同时提高了复合材料的拉伸强度。  相似文献   

11.
The silicone rubber with good thermal conductivity and electrical insulation was obtained by taking vinyl endblocked polymethylsiloxane as basic gum and thermally conductive, but electrically insulating hybrid Al2O3 powder as fillers. The effects of the amount of Al2O3 on the thermal conductivity, coefficient of thermal expansion (CTE), heat stability, and mechanical properties of the silicone rubber were investigated, and it was found that the thermal conductivity and heat stability increased, but the CTE decreased with increasing Al2O3 fillers content. The silicone rubber filled with hybrid Al2O3 fillers exhibited higher thermal conductivity compared with that filled with single particle size. Furthermore, a new type of thermally conductive silicone rubber composites, possessing thermal conductivity of 0.92 W/mK, good electrical insulation, and mechanical properties, was developed using electrical glass cloth as reinforcement. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2478–2483, 2007  相似文献   

12.
Castable particulate‐filled epoxy resins exhibiting excellent thermal conductivity have been prepared using hexagonal boron nitride (hBN) and cubic boron nitride (cBN) as fillers. The thermal conductivity of boron nitride filled epoxy matrix composites was enhanced up to 217% through silane surface treatment of fillers and multi‐modal particle size mixing (two different hBN particle sizes and one cBN particle size) prior to fabricating the composite. The measurements and interpretation of the curing kinetics of anhydride cured epoxies as continuous matrix, loaded with BN having multi‐modal particle size distribution, as heat conductive fillers, are highlighted. This study evidences the importance of surface engineering and multi‐modal mixing distribution applied in inorganic fillered epoxy‐matrix composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
In this study, the effects of thermally conductive filler type (α‐Al2O3, SiC), volume fraction of the filler, and filler particle size distribution on the thermal conductivity and viscosity of room‐temperature‐vulcanized (RTV) silicone rubber and silicone grease were investigated. We were interested to find that silicone grease (or the RTV silicone rubber) had a maximum thermal conductivity (~1.48 W/mK) and a minimum viscosity (~3.4 × 104 mPa s), with a definite total volume fraction of the filler (0.55) when the distribution of filler sizes (the number ratio of two different particles sizes, i.e., 0.8 and 6 μm) was 600–700. We were able to increase the thermal conductivity of the RTV silicone rubber and silicone grease beyond 2 W/mK by increasing the total volume fraction of the filler with adequate filler size distributions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2397–2399, 2003  相似文献   

14.
环氧树脂/氧化锌晶须/氮化硼导热绝缘复合材料的研究   总被引:6,自引:0,他引:6  
以环氧树(脂EP)为基体,分别以氧化锌晶(须ZnOw)和ZnOw/氮化硼(BN)混合物为导热填料,制备了EP导热绝缘复合材料。研究了填料含量对复合材料导热性能、电绝缘性能及力学性能的影响,并利用扫描电镜对复合材料的断面形貌进行了观察。结果表明:随着导热填料含量的增大,复合材料的导热系数和介电常数增大,体积电阻率下降,而拉伸强度呈先增大后减小的趋势;在填料含量相同的情况下,EP/ZnOw/BN复合材料比EP/ZnOw复合材料具有更好的导热性能;当填料体积分数为15%时,EP/ZnOw/BN复合材料的热导率为1.06W/(mK)而,EP/ZnOw复合材料的热导率仅为0.98W/(mK)。  相似文献   

15.
The properties of silicone rubber filled with three kinds of binary mixtures of alumina particles with different size distribution (i.e., 30 μm + 0.5 μm, 10 μm + 0.5 μm, and 5 μm + 0.5 μm) were investigated as a function of relative volume fraction of the 0.5 μm particles in the hybrid alumina (Vs) at a fixed total filler content of 55 vol%. The results indicate that each binary mixture of alumina‐filled silicone rubber exhibited improved thermal conductivity and tensile strength, and decreased dielectric constant, compared to a single particle size filler‐reinforced one, and the maximum improvements were obtained at the Vs ranging from 0.2 to 0.35; the coefficient of thermal expansion (CTE) of filled silicone rubber obviously reduced with increase in the Vs, whereas the elongation at break slightly decreased. At Vs = 0, the larger particles‐filled silicone rubber showed higher thermal conductivity, CTE, dielectric constant, and elongation at break, and lower tensile strength compared with the those of the smaller particles‐filled one. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
以端乙烯基硅油、含氢硅油为原料,添加填料、催化剂等制得有机硅灌封胶,探讨了α-氧化铝、球形氧化铝、氮化硼、有机蒙脱土对灌封胶性能的影响.结果表明,单纯采用α-氧化铝作填料时,灌封胶的流动性较差、排泡时间过长;采用相同粒径的球形氧化铝替代α-氧化铝能降低灌封胶的黏度,提高流动性和排泡速度,但会降低热导率,且胶料密度过高;...  相似文献   

17.
介绍了导热室温硫化硅橡胶的导热机理及导热模型,分析了室温硫化硅橡胶的导热性能及综合性能,并概述了国内外导热室温硫化硅橡胶的研究现状。指出通过填充不同粒径分布的填料或对填料进行适当的表面处理,可以制备高导热室温硫化硅橡胶。  相似文献   

18.
Hollow glass microbead/silicone rubber composite coatings were prepared to improve the heat-resistance and mechanical properties of silicone rubber-based composites, using CE modified SR as the matrix and HGM as the filler. The microscopic morphology and thermal stability of the composites were characterized by scanning electron microscopy (SEM) and thermogravimetric analyzer (TGA), respectively. The results showed that the thermal stability of the composites increases with the increase of filler content. For the composite sample with a HGM mass content of 16.7%, the initial decomposition temperature (T5) is 408°C, which is 84°C higher than that of silicone rubber. The low density and high sphericity of HGM make it easier to uniformly disperse in the polymer matrix. In addition, compared to silica, which is commonly used as an inorganic filler, the lower thermal conductivity of HGM is also beneficial for achieving better thermal shielding effect. It is confirmed that the insufficient thermal stability of the polymer matrix above 400°C can be compensated for by the properly dispersed inorganic fillers. Therefore, the thermal stability of the composite is improved by the synergistic effect of modified heat-resistant matrix and inorganic filler.  相似文献   

19.
以聚乙二醇(PEG)为插层剂,通过机械球磨法制备了PEG插层剥离改性氮化硼.以低密度聚乙烯(LDPE)为基体,PEG插层剥离改性氮化硼为导热填料,采用双辊开炼、压片成型制备LDPE/PEG插层剥离改性氮化硼导热复合材料,研究了改性氮化硼用量及粒径对复合材料导热性能、力学性能和电绝缘性能的影响.结果表明:随着PEG插层剥...  相似文献   

20.
To improve mechanical and thermal properties of a hexagonal boron nitride platelet filled polymer composites, maleic anhydride was studied as a coupling agent and compatibilizer. Injection molded blends of acrylonitrile butadiene styrene (ABS), high-density polyethylene (HDPE), and maleic anhydride with boron nitride filler were tested for thermal conductivity and impact strength to determine whether adding maleic anhydride improved interfacial interactions between matrix and filler and between the polymers. Adding both HDPE and maleic anhydride to ABS as the matrix of the composite resulted in a 40% improvement in impact strength without a decrease in thermal conductivity when compared to an ABS matrix. The best combination of thermal conductivity and impact strength was using pure HDPE as the matrix material. The effective medium theory model is used to help explain how strong filler alignment helps achieve high thermal conductivity, greater than 5 W/m K for 60 wt % boron nitride. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48661.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号