共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
3.
150 t钢包底吹氩工艺优化 总被引:1,自引:0,他引:1
对梅山钢铁公司150 t钢包建立水力学模型,试验研究不同喷嘴布置方式(单喷嘴、双喷嘴90°夹角布置和双喷嘴 180°夹角布置)、布置位置(喷嘴距包底中心0.40R、0.55R、0.70R)和吹气量(35~60m3/h)对钢包内钢液混匀时间及卷渣的影响,得出150 t钢包底吹氩的优化工艺参数为单喷嘴0.55R布置,吹气量控制在45 m3/h.应用生产后,单包钢水在中间包两次测温的平均温差仅2.66℃,吹氩处理前后夹杂物含量下降了30.1%,Al收得率较工艺优化前提高了50%. 相似文献
4.
采用几何相似比1:3水模型,对250 t钢包底吹氩位置优化进行模拟试验,用电导法测定了单孔喷吹、双孔夹角90°和180°对称喷吹在至钢包中心不同距离处(0.37~0.61 R)采用不同吹气量(5~25 m3/h)时钢水的混匀时间。试验结果表明,单孔底吹氩,吹孔距钢包底部中心0.61 R(R为钢包底部半径)时混匀时间最短;双孔喷吹对称分布的混匀时间比单孔喷吹的混匀时间短;当双孔喷嘴0.61 R对称分布时,混匀时间最短,死区最小,且双孔喷嘴间距由0.37 R增至0.61 R时混匀时间明显减小。 相似文献
5.
6.
7.
以国内某钢厂45t钢包为研究对象,在相似原理的基础上建立了钢包吹氩水模型(模型与原型的几何比为1∶2.5),研究了吹氩孔的位置和吹氩流量对钢液混匀特性的影响。实验发现:无论是单孔吹氩还是双孔吹氩都存在一个临界流量,在临界流量时钢液混匀特性最好。其中对于单孔吹氩工艺,吹氩位置在距离钢包底部中心0.5R(钢包底半径)处较合理,模型临界流量为0.35m3/h;对于双孔吹氩工艺,两孔位置在0.5R、角度为45°较理想,模型临界流量为0.40m3/h。工业试验表明,改进后的吹氩方案在降低总氧和夹杂物方面均优于改进前的吹氩方案。 相似文献
8.
针对钢厂150 t双孔底吹氩钢包,根据相似原理建立几何比例为1:5的水力学模型,得出对应实际氩流量260~600 L/min时原型钢包及优化后钢包的液面裸露面积及渣钢卷混情况的变化规律和临界卷渣气量。研究结果表明,原型方案下两透气砖分别位于距钢包中心0.64 R和0.76 R处,两孔成90°(0.64 R+0.76 R,90°),临界卷渣气量为550 L/min;对于两个优化方案,双孔分别位于1/3 R和0.64 R,两孔成180°(1/3 R+0.64 R,180°)以及双孔位于0.5 R圆周上,两孔成135°(0.5 R+0.5 R,135°),临界卷渣气量分别为550 L/min与600 L/min。 相似文献
9.
以钢厂100 t钢包为原型,根据相似原理建立1:4水模型,研究了双孔底吹位置(0.54~0.72R)、角度(45°~180°)和底吹流量(0.04~0.55 m~3/h)对混匀时间和钢-渣界面的影响,以确定最佳底吹工艺参数。结果表明,透气砖布置的最优位置为底吹孔距钢包底面中心0.63R,180°夹角;最大底吹气量在0.37 m3/h(原型18.0m3/h),软吹气量必须小于0.12 m3/h(原型小于6.0 m3/h),建议软吹气量≤0.04 m3/h(原型≤2.0 m3/h)。 相似文献
10.
11.
12.
13.
14.