首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于Timoshenko梁理论和Vlasov薄壁杆件理论,通过设置单元内部节点并对弯曲转角和翘曲角采取独立插值的方法,建立了可考虑横向剪切变形和扭转剪切变形及其耦合作用、弯扭耦合、以及二次剪应力影响的空间薄壁梁非线性有限元模型。以更新的拉格朗日格式描述的几何非线性应变推得几何刚度矩阵。同时考虑了材料非线性,假定材料为理想塑性体,服从Von Mises屈服准则和Prandtle-Reuss增量关系,采用有限分割法,由数值积分得到空间薄壁梁的弹塑性刚度矩阵。算例表明该文所建梁单元模型具有良好的精度,适用于空间薄壁结构的有限元分析。  相似文献   

2.
为了精确描述柔性铰链力学性能,提出一种通用的基于有限元法的力学模型,并基于该模型分析其静态和动态性能.柔性铰链采用欧拉-伯努利梁模拟其力学行为,将其划分为3个三自由度的结点、2个变截面单元.采用最小势能原理建立与柔性铰链结构参数相关的封闭形式刚度矩阵,采用拉格郎日方程建立铰链的质量矩阵和动力学方程.为了验证所推导的力学模型的精确性,与 ANSYS分析结果进行比较分析,两者的结果差值在1.1%~5.6%范围之内,说明理论模型与ANSYS分析结果吻合,所建立的模型能精确反映其静态和动态性能.基于柔性铰链有限元模型,可精确分析铰链参数与其精度和固有频率的关系、应力分布和频率响应,为正圆型柔性铰链应用于柔顺机构设计提供了一种精确的力学模型.  相似文献   

3.
裂纹结构的动力学建模和仿真是裂纹故障定量识别的前提和基础.为建立高效而精确的裂纹斜梁动力学辨识模型,采用具有正交特性的勒让德正交多项式作为梁横向位移场的附加高阶形函数,推导出了具有解析形式的斜梁单元刚度矩阵和质量矩阵,同时利用断裂力学和能量原理得到了裂纹单元的刚度方程,并建立了含裂纹斜梁的高阶有限元动力分析模型.数值算例表明该方法在计算效率和精度方面均有良好的表现,为斜梁的裂纹识别提供了有效的计算方法.  相似文献   

4.
为提高空间Timoshenko梁单元非线性问题的计算精度,在共旋坐标法的基础上,提出了一种改进的Timoshenko梁单元几何非线性分析方法。利用虚功原理得到改进空间梁单元的刚度矩阵;使用有限质点法中的逆向运动思路计算单元局部坐标系下的刚体旋转矩阵;根据整体坐标系与局部坐标系之间旋转角度的转化以及微分关系,求得空间梁单元的切线刚度矩阵;编制了相应的有限元程序,对多个经典的大变形结构进行几何非线性分析。计算结果印证了该文所提出改进方法的正确性,同时与传统共旋坐标法相比,具有更高的精度。  相似文献   

5.
一种求解梁动力响应的新方法   总被引:1,自引:1,他引:1  
吴国荣 《振动与冲击》2006,25(4):146-148
基于动刚度方法与常规有限元方法提出了一种计算梁动力响应的新方法。单元插值形函数是由梁的自由振动方程导出的,称为精确形函数。应用哈密顿原理推出振动控制方程。利用傅立叶展开定理求解梁的动力响应。数值模拟结果与常规有限元方法进行了比较,结果表明了新方法的有效性。  相似文献   

6.
该文基于文克尔地基梁理论,利用修正的P-Y曲线法和荷载传递双曲线法,建立了桩-土非线性作用模型。采用了桩和土相对刚度来计算水平方向桩-土相互作用的初始刚度。通过Mohr-Coulomb法则得到土的极限抗力,并结合Matlock P-Y曲线法对极限抗力的表达式进行了修正,从而充分考虑了土的极限抗力的深度效应。编制了桩-土非线性梁单元有限元程序,建立了考虑非线性桩-土相互作用的车桥耦合模型。结合工程实例,分析了非线性桩-土相互作用的桥梁模型对车桥耦合响应的影响,并与墩底固结模型进行了对比。结果表明:在车桥耦合振动过程中,考虑非线性的桩-土相互作用,桥梁的横向位移幅值显著增大,竖向位移幅值增大,桥梁加速度幅值降低。此结果对处于软弱基础的高速铁路桥梁的分析和设计提供了参数和依据。  相似文献   

7.
将桩等效为Timoshenko梁,上部结构等效为单自由度弹簧质量块,基于桩-土相互作用的Winkler模型,研究了在垂直入射简谐SH波作用下桩-液化土-上部结构耦合体系的水平振动特性。考虑土体的自由场位移、上部结构的平动和转动惯性以及和桩轴向压力的二阶效应,建立了单桩-液化土-上部结构耦合体系的边值问题,得到桩变形和上部结构运动的解析解。数值分析了几何和物理等参数对桩头和上部结构位移放大因子和动力放大因子的影响,结果表明:单桩-液化土-上部结构体系存在明显的共振现象,且土体自由场位移对桩头和上部结构的位移放大因子影响显著;随着上部结构刚度的增加,桩-液化土-上部结构体系的基频增大,位移放大因子峰值减小;随着土体液化的发展,单桩-液化土-上部结构系统基频和动力放大因子逐渐减小。  相似文献   

8.
解析型Winkler弹性地基梁单元构造   总被引:1,自引:0,他引:1  
该文采用Winkler弹性地基梁理论确定了弹性地基梁的挠度方程解析通解; 根据最小势能原理建立了解析型Winkler弹性地基欧拉梁及铁摩辛柯梁的单元刚度及等效节点荷载; 得到了解析型弹性地基欧拉梁单元AWFB-E及铁摩辛柯梁单元AWFB-T。同时,论文还采用传统里兹法求得了相应的Winkler弹性地基欧拉梁及铁摩辛柯梁单元刚度矩阵,得到了里兹法弹性地基欧拉梁单元RWFB-E及铁摩辛柯梁单元RWFB-T。对该文构建的两类单元与一般梁-基体系有限元分析结果及理论解析解进行了对比。对比结果表明,传统里兹法由于其多项式形函数无法精确模拟弹性地基梁变形,因此其结果与理论解析解有误差,但随着单元数量增多其误差减小; 采用解析型单元进行计算时,无论单元数量多少,得到的均为“真实”解,说明解析试函数法求得的位移形函数比一般的多项式形函数精确,得到的弹性地基梁单元具备解析型、精确性的特点,可应用于解决实际工程问题。  相似文献   

9.
解析型弹性地基Timoshenko梁单元   总被引:1,自引:0,他引:1  
采用双参数弹性地基模型和Timoshenko深梁模型,建立了弹性地基一般梁挠度控制方程,求解得到了挠度方程解析通解,构建了双参数弹性地基深梁的挠度、截面弯曲转角及剪切角的解析位移形函数。建立了梁模型、梁基模型等两种势能泛函,利用最小势能原理,构造了两个双参数弹性地基深梁单元,给出了单元列式。分析表明:梁模型单元在均布荷载作用下误差为0.221%,非均布荷载作用下误差为0;梁基模型单元在均布荷载作用下误差为0,在两端集中力作用下误差为6.597%,在跨中集中力作用下误差为102.716%;同时,该文提出的双参数Timoshenko梁模型单元不存在剪切闭锁的问题。  相似文献   

10.
采用传递矩阵法,将船舶推进轴系简化为质量点单元、弹性支承单元和具有分布参数的梁单元。基于修正的Timoshenko梁理论,推导出推进轴系的场传递矩阵表达式。然后,引入相应的边界条件,形成方程组并实现不同轴承刚度下推进轴系轴承处的力和位移响应求解。最后,从能量的角度,对推进轴系各轴承传递路径处的功率流进行分析,并与有限元结果比较。结果表明:基于修正Timoshenko梁理论的传递矩阵法在计算推进轴系弯曲振动时是可行有效的;艉后轴承刚度对轴系振动传递影响最大,艉前轴承次之,推力轴承影响最小。  相似文献   

11.
Transcendental stiffness matrices for vibration (or buckling) have been derived from exact analytical solutions of the governing differential equations for many structural members without recourse to the discretization of conventional finite element methods (FEM). Their assembly into the overall dynamic structural stiffness matrix gives a transcendental eigenproblem, whose eigenvalues (natural frequencies or critical load factors) can be found with certainty using the Wittrick–Williams algorithm. A very recently discovered analytical property is the member stiffness determinant, which equals the FEM stiffness matrix determinant of a clamped ended member modelled by infinitely many elements, normalized by dividing by its value at zero frequency (or load factor). Curve following convergence methods for transcendental eigenproblems are greatly simplified by multiplying the transcendental overall stiffness matrix determinant by all the member stiffness determinants to remove its poles. In this paper, the transcendental stiffness matrix for a vibrating, axially loaded, Timoshenko member is expressed in a new, convenient notation, enabling the first ever derivation of its member stiffness determinant to be obtained. Further expressions are derived, also for the first time, for unloaded and for static, loaded Timoshenko members. These new expressions have the advantage that they readily reduce to corresponding expressions for Bernoulli–Euler members when shear rigidity and rotatory inertia are neglected. Additionally, the total equivalence of the normalized transcendental determinant with that of an infinite order FEM formulation aids understanding and evaluation of conventional FEM results. Examples are presented to illustrate the use of the member stiffness determinant. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
For the deflection analyses of thin-walled Timoshenko laminated composite beams with the mono- symmetric I-, channel-, and L-shaped sections, the stiffness matrices are derived based on the solutions of the simultaneous ordinary differential equations. A general thin-walled composite beam theory considering shear deformation effect is developed by introducing Vlasov’s assumptions. The shear stiffnesses of thin-walled composite beams are explicitly derived from the energy equivalence. The equilibrium equations and force-deformation relations are derived from energy principles. By introducing 14 displacement parameters, a generalized eigenvalue problem that has complex eigenvalues and multiple zero eigenvalues is formulated. Polynomial expressions are assumed as trial solutions for displacement parameters and eigenmodes containing undetermined parameters equal to the number of zero eigenvalues are determined by invoking the identity condition to the equilibrium equations. Then the displacement functions are constructed by combining eigenvectors and polynomial solutions corresponding to nonzero and zero eigenvalues, respectively. Finally, the stiffness matrices are evaluated by applying the member force-displacement relations to the displacement functions. In addition, the finite beam element formulation based on the classical Lagrangian interpolation polynomial is presented. In order to verify the validity and the accuracy of this study, the numerical solutions are presented and compared with the finite element results using the isoparametric beam elements and the detailed three-dimensional analysis results using the shell elements of ABAQUS. Particularly the effects of shear deformations on the deflection of thin-walled composite beams with the mono-symmetric I-, channel-, and L-shaped sections with various lamination schemes are investigated.  相似文献   

13.
The exact stiffness matrix, based on the simultaneous solution of the ordinary differential equations, for the static analysis of mono-symmetric arbitrarily laminated composite I-beams is presented herein. For this, a general thin-walled composite beam theory with arbitrary lamination including torsional warping is developed by introducing Vlasov’s assumption. The equilibrium equations and force–deformation relations are derived from energy principles. The explicit expressions for displacement parameters are then derived using the displacement state vector consisting of 14 displacement parameters, and the exact stiffness matrix is determined using the force–deformation relations. In addition, the analytical solutions for symmetrically laminated composite beams with various boundary conditions are derived as a special case. Finally, a finite element procedure based on Hermitian interpolation polynomial is developed. To demonstrate the validity and the accuracy of this study, the numerical solutions are presented and compared with the analytical solutions and the finite element results using the Hermitian beam elements and ABAQUS’s shell element.  相似文献   

14.
A so-called exact static stiffness matrix for a uniform beam element with open thin-walled cross-section carrying an axial compressive load is derived. This stiffness matrix is useful in an accurate calculation of bifurcation loads and corresponding buckling modes of space frames built up of such beam elements. One may also calculate displacements and sectional forces caused by external joint loads taking into account the second-order effect of the axial beam loads. The exact stiffness matrix is derived by use of the general solution to a set of three coupled differential equations. This means that no preselected shape functions need be introduced and that discretization errors are avoided. The differential equations model coupled Euler–Bernoulli bending in the two principal planes and Saint-Venant/Vlasov torsion and warping with respect to the shear centre axis. No cross-sectional symmetries are assumed. Numerical examples are given. One application will be to loaded pallet racks. The ‘effective length’ for a rack column is calculated.  相似文献   

15.
16.
The plane two-node curved beam finite element with six degrees of freedom is considered. Knowing the set of 18 exact shape functions their approximation is derived using the expansion of the trigonometric functions in the power series. Unlike the ones commonly used in the FEM analysis the functions suggested by the authors have the coefficients dependent on the geometrical and physical properties of the element. From the strain energy formula the stiffness matrix of the element is determined. It is very simple and can be split into components responsible for bending, shear and axial forces influences on the displacements. The proposed element is totally free of the shear and membrane locking effects. It can be referred to the shear-flexible (parameter d) and compressible (parameter e) systems. Neglecting d or e yields the finite elements in all necessary combinations, i.e. curved Euler–Bernoulli beam or curved Timoshenko beam with or without the membrane effect. Applying the elaborated element in the calculations a very good convergence to the analytical results can be obtained even with a very coarse mesh without the commonly adopted corrections as reduced or selective integration or introduction of the stabilization matrices, additional constraints, etc., for the small depth–length ratio. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide extremely accurate solutions, while reducing the total number of degrees-of-freedom to resolve the computational and cost problems. Thus, in this paper, the spectral element model is developed for an axially loaded bending–shear–torsion coupled composite laminated beam which is represented by the Timoshenko beam model based on the first-order shear deformation theory. The high accuracy of the spectral element model is then numerically verified by comparing with exact theoretical solutions or the solutions obtained by conventional finite element method. For the numerical verification, the finite element model is also provided for the composite laminated beam.  相似文献   

18.
通过直接求解单对称均匀薄壁Timoshenko梁单元弯扭耦合振动的运动微分方程,推导了其精确的动态刚度矩阵。在本文研究中考虑了弯扭耦合、翘曲刚度、转动惯量和剪切变形的影响。针对某弯扭耦合的薄壁梁算例,应用本文推导的动态刚度矩阵,采用自动Muller法和结合频率扫描法的二分法求解频率特征方程,计算了该薄壁梁的固有特性,并讨论了翘曲刚度、剪切变形和转动惯量对该弯扭耦合薄壁梁的固有频率和模态形状的影响。数值结果验证了本文方法的精确性和有效性,并指出随着模态阶次的增加,剪切变形、转动惯量和翘曲刚度对薄壁梁的固有特性的影响更加显著。  相似文献   

19.
J N Reddy 《Sadhana》1999,24(3):175-198
First, various finite element models of the Timoshenko beam theory for static analysis are reviewed, and a novel derivation of the 4 × 4 stiffness matrix (for the pure bending case) of the superconvergent finite element model for static problems is presented using two alternative approaches: (1) assumed-strain finite element model of the conventional Timoshenko beam theory, and (2) assumed-displacement finite element model of a modified Timoshenko beam theory. Next, dynamic versions of various finite element models are discussed. Numerical results for natural frequencies of simply supported beams are presented to evaluate various Timoshenko beam finite elements. It is found that the reduced integration element predicts the natural frequencies accurately, provided a sufficient number of elements is used. The research reported herein is supported by theOscar S. Wyatt Endowed Chair.  相似文献   

20.
考虑剪切变形影响的斜梁桥自振频率的解析方法   总被引:1,自引:0,他引:1  
斜梁桥振动频率没有显式解,给使用《公路桥涵设计通用规范》方法计算冲击系数带来不便。考虑斜梁桥振动时的弯扭耦合效应,分别采用修正的Timoshenko梁理论建立其弯曲振动的动态刚度矩阵,采用Saint-Venant扭转理论建立其自由扭转振动的动态刚度矩阵,结合斜支承边界条件,导出斜支承坐标系下的动态刚度矩阵,提取弯矩-转角的刚度方程,根据其奇异条件建立关于斜梁桥自振频率的超越方程,采用二分法对超越方程进行求解以得到自振频率。该文分析了一座标准A型单跨斜箱梁桥考虑与不考虑剪切变形影响时的前5阶振动频率随斜交角的变化,比较了正交简支初等梁和正交简支深梁、斜支初等梁和斜支深梁的前5阶频率。结果显示:斜梁桥基频随斜交角的增大而增大、第2阶频率随斜交角的增大而减小;斜梁桥振动频率的计算应采用考虑剪切变形影响的深梁理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号