首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fuzzy logic control based maximum power tracking of a wind energy system   总被引:3,自引:0,他引:3  
In this paper a utility interactive wind energy conversion system (WECS) with an asynchronous (AC–DC–AC) link is described. The control system has the objective of identifying and extracting the maximum power from the wind energy system and transferring this power to utility. A fuzzy logic control (FLC) technique has been implemented to design the tracking controller of the WECS. A wind speed step model was used in the design phase. The performance of the WECS with the proposed fuzzy logic controller is tested using real meteorological data. Its robustness and effectiveness are demonstrated by the simulation results of the controlled system.  相似文献   

2.
无刷双馈风力发电机组的自抗扰功率解耦控制   总被引:1,自引:0,他引:1  
对无刷双馈风力发电机组稳态运行时的功率分配关系进行了详细分析,在此基础上确定了最大风能捕获的控制策略.将自抗扰控制应用到无刷双馈电机有功功率与无功功率的解耦控制,将功率控制系统分解为有功功率子系统和无功功率子系统,从而建立了风力发电机组完整的功率控制模型.基于Matlab/Simulink的仿真结果表明无刷双馈风力发电机组自抗扰控制成功实现了有功功率与无功功率的解耦控制,不仅能够实现最大风能捕获,而且可以根据电网的实际需求调节机组无功功率的输出,验证了控制算法的有效性.  相似文献   

3.
This paper presents a control strategy based on adaptive feedback linearization intended for variable speed grid‐connected wind energy conversion systems (WECS). The proposed adaptive control law accomplishes energy capture maximization by tracking the wind speed fluctuations. In addition, it linearizes the system even in the presence of turbine model uncertainties, allowing the closed‐loop dynamic behaviour to be determined by a simple tuning of the controller parameters. Particularly, the attention is focused on WECS with slip power recovery, which use a power conversion stage as a rotor‐controlled double‐output induction generator. However, the concepts behind the proposed control strategy are general and can be easily extended to other WECS configurations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a simple control strategy for an optimal extraction of output power from grid connected variable speed wind energy conversion system (WECS) is presented. The system consists of a variable speed wind turbine coupled to a permanent magnet synchronous generator (PMSG) through a gear box, a diode bridge rectifier, a dc-to-dc boost converter and a current controlled voltage source inverter. The maximum power point tracker (MPPT) extracts maximum power from the wind turbine from cut-in to rated wind velocity by sensing only dc link power. The MPPT step and search algorithm in addition to the DC–DC and DC–AC converters PWM controllers are simulated using MATLAB-SIMULINK software. The obtained simulation results show that the objectives of extracting maximum power from the wind and delivering it correctly to the grid are reached.  相似文献   

5.
This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype.  相似文献   

6.
This paper presents the output power control of a wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). It is assumed that the considered wind module integrates a stand-alone hybrid generation system, jointly with a battery bank, a variable ac load, and other generation subsystems. The operation strategy of the hybrid system determines two possible operation modes for the WECS, depending on the power requirements of the load and the wind availability. The paper deals with the design of a combined high-order sliding mode (HOSM) controller for the power control of the WECS on both operational modes. The main features of the obtained controller are its chattering-free behavior, its finite-time reaching phase, its simplicity, and its robustness with respect to external disturbances and unmodeled dynamics. The performance of the closed-loop system is assessed through representative computer simulations.   相似文献   

7.
In this paper, we are interested in a Wind Energy Conversion System (WECS) based on a Permanent Magnetic Synchronous Generator (PMSG). The studied WECS is made by the association of three aerogenerators. The objective of this work is to investigate a new strategy of pitch angle control to ensure a balance between the produced energy and the demanded one by the loads. The control strategy of the wind farm is composed of two parts: a local control according to the characteristics of each wind turbine « Pitch control » to protect the turbines against mechanical failure in the event of wind gust and a global control according to the total power demand and the available wind power. This strategy leads to achieving power objectives (active and reactive power targets) and system constraints.  相似文献   

8.
This paper presents a novel approach for reactive power compensation and active filtering capability of a variable speed wind energy conversion system (WECS) with doubly fed induction generator (DFIG), without any over‐rating. First, the WECS is capable of capturing maximum wind power under fluctuating wind speed. Second, depending on the available wind power value versus nominal WECS power, power quality can be improved by compensating the reactive power and the grid harmonic currents, without any system over‐rating. The proposed rotor side converter (RSC) control manages the WECS function's priorities, between main active power generation and power quality management. To ensure high filtering performances, we used an improved harmonic isolator in the time domain, based on a selective pass band filter (SPBF) developed in our laboratory. Moreover, we took advantage of the high amplification effect of the rotor side‐controlled DFIG to compensate harmonic currents. Consequently, no over‐rating is necessary for the proposed additional active filtering capability. Simulation results for a 2 MW WECS with DFIG confirm the effectiveness and the performances of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with generation efficiency maximization of wind energy conversion systems (WECS) with double output induction generator (DOIG). In the first place, to design a sliding mode controller, an apropos model of the DOIG with electronic drive in the rotor is developed. Then, conditions of maximum power generation are obtained. Finally, a sliding mode control strategy for this type of WECS is presented. The proposed strategy varies the firing angle of the electronic drive in order to set the extreme control values equal to the maximum and minimum available control action of the system. Consequently, robustness to 001Uparametric uncertainties and external disturbances is maximised. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
基于无源性理论的风力机最大风能捕获控制   总被引:11,自引:0,他引:11  
讨论了具有随机性风速变化和非线性的风电系统的最大风能捕获控制问题,系统采用基于无源性控制方案下的浆距角和触发角双输入控制方案,通过选择适当的状态稳态特性和注入阻尼的方法,将风能的最大捕获与系统的全局稳定性相结合,设计出了一种对风速变化和参数摄动具有鲁棒性且使风电系统具有良好动态特性的控制系统。仿真结果显示,对于具有随机性风速变化和变参数风电系统,该控制策略可以实现风能的最大捕获。  相似文献   

11.
This paper concentrates on the output power smoothing and the grid dynamic response enhancement of a grid‐interactive MW‐class permanent magnet synchronous generator‐based wind energy conversion system (WECS). A simple fuzzy controller method is applied to improve the overall performance of the WECS. The proposed method can retrieve the storing kinetic energy from the inertia of a wind turbine, perfectly. As a result, it can ensure a proficient power smoothing of the variable speed WECS. On the other hand, the grid side inverter is controlled by the fuzzy controller. This approach can reduce the fluctuation of DC link voltage and can deliver a smooth power to the power grid. The proposed method is compared with two other methods such as the maximum power point tracking control method and the without fuzzy controller method. A simple shunt circuit also includes in the DC link circuit. Therefore, during the system fault condition, the WECS can perform a stable operation. Effectiveness of the proposed method is verified by numerical simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Wind power is an intermittent energy source that behaves quite differently from conventional energy sources. The reliability impact of this highly variable energy source is an important aspect that needs to be assessed as wind power penetration becomes increasingly significant. Generation adequacy assessment including wind energy conversion systems (WECS) at multiple locations is described in this paper. Effective load-carrying capabilities (ELCC) obtained using the loss of load expectation (LOLE) and the loss of load frequency (LOLF) for a power system containing WECS are illustrated and compared. The results show that ELCC obtained using the LOLF and obtained using the LOLE for WECS can be considerably different, while they are similar for a conventional generating unit. The impact on the system reliability indices of wind speed correlation between two wind farms is also examined. The studies show that the degree of wind speed correlation between two wind farms has a considerable impact on the resulting reliability indices. The sequential Monte Carlo simulation approach is used as this methodology can facilitate a time series modeling of wind speeds, and also provides accurate frequency and duration assessments. An autoregressive moving average time series model is used in this study to simulate hourly wind speeds.  相似文献   

13.
The maximize energy captured from the wind of a grid-connected variable speed Wind Energy Conversion System (WECS) based on a Permanent Magnet Synchronous Generator (PMSG) is investigated in this paper. An adaptive back-stepping control scheme is applied to achieve maximum power point tracking in the coefficient of maximum power. The features of the proposed control scheme are that it deals with the random nature of wind speed, the uncertainties and external perturbations the acting on WECS effectively, where the bounds of the perturbations are not known in advance. At the same time, a proof of the convergence of the closed-loop system under the proposed controller is derived using the Lyapunov stability theory. Finally, simulations are conducted to illustrate the effectiveness of the proposed approach.  相似文献   

14.
Generating capacity adequacy associated with wind energy   总被引:2,自引:0,他引:2  
The wind is a highly variable energy source and behaves far differently than conventional energy sources. This paper presents a methodology for capacity adequacy evaluation of power systems including wind energy. The results and discussions on two representative systems containing both conventional generation units and wind energy conversion systems (WECS) are presented. A Monte Carlo simulation approach is used to conduct the analysis. The hourly wind speeds are simulated using an autoregressive moving average time-series model. A wide range of studies were conducted on two different sized reliability test systems. The studies show that the contribution of a WECS to the reliability performance of a generation system can be quantified and is highly dependent on the wind site conditions. A WECS can make a significant reliability contribution given a reasonably high wind speed. Wind energy independence also has a significant positive impact on the reliability contribution of multiple WECS.  相似文献   

15.
This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing scheme based on a diode rectifier and a boost DC–DC converter working in discontinuous conduction mode is proposed. The proposed generator control structure is based on three cascaded control loops that regulate the generator current, the turbine speed and the amount of power that is extracted from the wind, respectively, following the turbine aerodynamics and the actual wind speed. The analysis and design of both the current and the speed loops have been carried out taking into consideration the electrical and mechanical characteristics of the WECS, as well as the turbine aerodynamics. The power loop is not a linear one, but a maximum power point tracking algorithm, based on the Perturb and Observe technique, from which is obtained the reference signal for the speed loop. Finally, to avoid the need of mechanical sensors, a linear Kalman Filter has been chosen to estimate the generator speed. Simulation and experimental results on a 2‐kW prototype are shown to validate the concept. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The electrical energy production and reliability benefits of a wind energy conversion system (WECS) at a specific site depend on many factors, including the statistical characteristics of the site wind speed and the design characteristics of the wind turbine generator (WTG) itself, particularly the cut-in, rated and cut-out wind speed parameters. In general, the higher the degree of the wind site matching with a WECS is, the more are the energy and reliability benefits. An electrical energy production and reliability benefit index designated as the Equivalent Capacity Ratio (ECR) is introduced in this paper. This index can be used to indicate the electrical energy production, the annual equivalent utilization time and the credit of a WECS, and quantify the degree of wind site matching with a WECS. The equivalent capacity of a WECS is modeled as the expected value of the power output random variable with the probability density function of the site wind speed. The analytical formulation of the ECR is based on a mathematical derivation with high accuracy. Twelve WTG types and two test systems are used to demonstrate the effectiveness of the proposed model. The results show that the ECR provides a useful index for a WTG to evaluate the energy production and the relative reliability performance in a power system, and can be used to assist in the determination of the optimal WTG type for a specific wind site.  相似文献   

17.
Economic environmental dispatch (EED) is a significant optimization problem in electric power system. With more wide spread use of wind power, it is necessary to include wind energy conversion system (WECS) in the EED problem. This paper presents a model to solve the EED problem incorporating wind power. In addition to the classic EED factors, the factors accounting for overestimation and underestimation of available wind power in both economic and environmental aspects are also considered. In order to obtain some quantitative results, the uncertain characteristic of available wind power and the performance of WECS are determined on the basis of the statistical characteristic of wind speed. The optimization problem is numerically solved by a scenario involving two conventional generators and two wind-powered generators. The results demonstrate that the allocation of system generation capacity may be influenced by multipliers related to the cost for overestimation and underestimation of available wind power, and by the multiplier related to the emissions for underestimation of available wind power. Nevertheless, the multiplier related to the emissions for overestimation of available wind power has little impact on the allocation. Taking account of economic factors, environmental factors and impacts of wind power penetration, the proposed EED model is beneficial to finding the right balance between radical and conservative strategy for wind power development.  相似文献   

18.
Recently, wind power production has been under the focus in generating power and became one of the main sources of alternative energy. Generating of maximum power from wind energy conversion system (WECS) requires accurate estimation of aerodynamic torque and uncertainties presented in the system. The current paper proposed the generalized high‐order disturbance observer (GHODO) with integral sliding mode control (ISMC) for extraction of maximum power via variable speed wind turbine by accurate estimation of wind speed. The assumption in previous works that considers the aerodynamic torque as slow‐varying is not applicable for the real system. Therefore, the high‐order disturbance observers were designed for precise estimation of uncertainties with fast‐changing behavior. A robust control system was designed to control the speed of the rotor at the optimal speed ratio. The obtained simulation results have shown the better performance characteristics than conventional linear quadratic regulator (LQR) approach. The stability of the proposed algorithm was proven by Lyapunov stability anaysis. Simulations results were obtained in Matlab/Simulink environment.  相似文献   

19.
With the growth of wind energy conversion systems (WECSs), various technologies are developed for them. Permanent-magnet synchronous generators (PMSGs) are used by these technologies due to special characteristics of PMSGs such as low weight and volume, high performance, and the elimination of the gearbox. In this paper, a new variable-speed WECS with a PMSG and $Z$-source inverter is proposed. Characteristics of $Z$-source inverter are used for maximum power tracking control and delivering power to the grid, simultaneously. Two control methods are proposed for delivering power to the grid: Capacitor voltage control and dc-link voltage control. Operation of system with these methods is compared from the viewpoint of power quality and total switching device power (TSDP). In addition, TSDP, current ripple of inductor, performance, and total harmonic distortion of grid current of proposed system is compared with traditional wind energy system with a boost converter.   相似文献   

20.
Without storage provision, a wind energy conversion system (WECS) does not have fault ride-through capability for most temporary faults on the utility feeder. This paper proposes a hybrid valve switching and control strategy for a voltage-sourced converter (VSC) used for interfacing a WECS to the utility grid. The hybrid control of the VSC ensures continuous operation of the system in the presence of temporary single line to ground faults on the utility feeder without the need for a storage provision. The fast acting hybrid control also limits reactive fault current contribution by the converter, and therefore, avoids problems associated with overcurrent protection of the feeder. The hybrid valve switching and control of the VSC consists of: 1) sinusoidal pulse width modulation (SPWM) based valve switching and current-controlled voltage-source operation of the VSC during normal system operating conditions and 2) hysteresis space vector modulation (HSVM) based switching together with controlled current-source operation of the VSC during temporary fault conditions. The hybrid control of the VSC isolates the WECS from the grid side disturbances to ensure uninterrupted operation of the unit. Simulation studies of the grid-interactive WECS in PSCAD/EMTDC confirm the validity of the proposed hybrid control scheme.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号