首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feeding unsaturated dietary fat to lactating dairy cows receiving bST may effectively alter the fatty acid composition of milk fat. This was tested using 16 Holstein cows assigned to one of four treatments during midlactation. Treatments were control, control diet with 15.5 mg of bST/d per cow, dietary fat from sunflower seeds and bST, or dietary fat from safflower seeds and bST. Diets were formulated to contain 19% CP and contained 25% corn silage, 25% alfalfa hay, and 50% concentrate mix on a DM basis. Milk yield was not significantly higher when bST was administered and increased with added fat diets (29.5, 32.7, 40.0, and 34.1 kg/d for the control, control with bST, sunflower seed with bST, and safflower seed with bST treatments, respectively). Percentage of milk fat was similar for all treatments. Concentrations of long-chain and unsaturated fatty acids in milk were increased slightly by bST and substantially with added fat. Milk protein percentages were not influenced by bST but were reduced by approximately .2 unit with added fat. Added unsaturated dietary fat coupled with bST increased milk yield and produced a greater concentration of unsaturated fatty acids in milk.  相似文献   

2.
《Journal of dairy science》1988,71(12):3179-3187
Composition of milk and butter was evaluated from cows fed either control or experimental diets containing added fat of partially unsaturated fatty acid composition. The control diet concentrate mix consisted mainly of corn and soybean meal. The two experimental diets substituted either 20% high oleic sunflower seeds (>79% of fatty acids as oleic acid) or 20% regular sunflower seeds (>67% of fatty acids as linoleic acid) for part of the corn and soybean meal in the concentrate mix. Feeding lactating dairy cattle sunflower seeds resulted in lower concentrations of short and medium chain and higher concentrations of long-chain fatty acids in milk fat and butter. Milk unsaturated fatty acid concentrations were (28.9, 38.8, 45.6%), and butter unsaturated fatty acid concentrations were (29.6, 38.1, 44.3%) for control, high oleic sunflower seed, and regular sunflower seed treatment milk, respectively. Organoleptic evaluation indicated the high oleic sunflower seed and regular sunflower seed treatment butters were equal or superior in flavor to the control butter. The high oleic sunflower seed and regular sunflower seed treatment butters were softer, more unsaturated, and exhibited acceptable flavor, manufacturing, and storage characteristics.  相似文献   

3.
A control diet and a fish oil diet were fed to 12 multiparous Holstein cows to determine how the incorporation of Menhaden fish oil in the diet would influence the fatty acid composition, especially the conjugated linoleic acid and transvaccenic acid, contents of milk and butter. The control diet consisted of a 50:50 ratio of forage to concentrate, and the fish oil diet consisted of the control diet with 2% (on a dry matter basis) added fish oil. Milk from cows fed the control diet contained higher average concentrations of milk fat (3.37%) compared with milk from cows fed the fish oil diet (2.29%). Milk from cows fed fish oil contained higher concentrations of conjugated linoleic acid, transvaccenic acid, and total unsaturated fatty acids (0.68 and 2.51; 1.42 and 6.28; and 30.47 and 41.71 g/100 g of fat, respectively). Butter made from the fish oil diet milk also had higher concentrations of conjugated linoleic acid, transvaccenic acid, and unsaturated fatty acids. Penetrometer readings indicated fish oil diet butters were softer at 4 and 20 degrees C than the control diet butters. Acid degree values were similar in the fish oil butters compared with the control butters. No significant difference was found in the flavor characteristics of milk and butter from cows fed the control and fish oil diets. Production of milk and butter with increased amounts of conjugated linoleic acid, transvaccenic acid, and other beneficial fatty acids may have a desirable impact on the health of consumers and lead to increased sales.  相似文献   

4.
Thirty lactating Holstein cows were in a continuous trial from 21 to 120 days postpartum to evaluate diets containing whole, rolled sunflower seeds with or without additional limestone. Cows were fed individually total mixed rations of (dry matter) 47% corn silage, 9% alfalfa hay, and 44% concentrate. Concentrates were corn and soybean meal (control); corn, soybean meal, and 22% sunflower seeds; or corn, soybean meal, and sunflower seeds plus 3.5% additional limestone. Milk yield (32.2, 32.0, and 32.8 kg/day) was similar among rations. Yield of 4% fat-corrected milk was lower for cows fed sunflower seeds without additional limestone (30.2, 28.1, and 30.2 kg/day) because of lower milk fat percentages (3.57, 3.19, and 3.51). Milk protein percentage tended to be lower for cows fed sunflower seeds with additional limestone (3.01, 2.97, and 2.90). Milk, flavor score was acceptable but tended to be lower for milk from cows fed sunflower seeds with additional limestone (8.4, 8.5, and 7.9). Milk fat from cows fed sunflower seed rations contained less carbon-14:0, 16:0, and 16:1 fatty acids but more carbon-18:0. Dry matter intakes were 21.0, 18.4, and 20.0 kg/day. Dry matter digestibilities, body weight changes, and ruminal volatile fatty acid concentrations were similar among treatments. Total cholesterol in blood serum was elevated in cows fed sunflower seed rations. Insoluble salts of fatty acids were increased in ruminal fluid dry matter from cows fed sunflower seeds but were not increased further by additional limestone. Concentrations of nonesterified carbon-18:1 fatty acids in ruminal fluid dry matter were lower for cows fed sunflower seeds with additional limestone.  相似文献   

5.
Milk was collected from eight multiparous Holstein and four multiparous Brown Swiss cows that were distributed into four groups and arranged in a randomized complete block design with four 4-wk periods. The four treatments included a control diet of a 50:50 ratio of forage-to-concentrate; a fish oil diet of the control diet with 2% (on dry matter basis) added fat from menhaden fish oil; a fish oil with extruded soybean diet of the control diet with 1% (on dry matter basis) added fat from menhaden fish oil and 1% (on dry matter basis) added fat from extruded soybeans; and an extruded soybean diet of the control diet with 2% (on dry matter basis) added fat from extruded soybeans. Milk from cows fed control, fish oil, fish oil with extruded soybean, and extruded soybean diets contained 3.31, 2.58, 2.94, and 3.47% fat, respectively. Concentrations of conjugated linoleic acid in milk were highest in the fish oil (2.30 g/100 g of fatty acids) and fish oil with extruded soybean (2.17 g/100 g of fatty acids) diets compared with the control (0.56 g/100 g fatty acids) diet. Milk, cream, butter, and buttermilk from the fish oil, fish oil with extruded soybean, and extruded soybean diets had higher concentrations of transvaccenic acid and unsaturated fatty acids compared with the controls. Butter made from the extruded soybean diet was softest compared with all treatments. An experienced sensory panel found no flavor differences in milks or butters.  相似文献   

6.
Ten Holstein cows were used in a 15-wk nested factorial to evaluate the response to diets containing added fat from sunflower seeds high (greater than 65%) in linoleic acid (regular sunflower seeds) or high (80%) in oleic acid (high oleic acid variety sunflower seeds). Replicated periods were of 5 wk each, with data collected the last 3 wk of each period. Total mixed diets were 40% corn silage (DM basis), 15% alfalfa hay, and 45% concentrate mix. Concentrate mixes were control, 20% regular sunflower seeds, or 20% high oleic acid sunflower seeds in place of portions of the corn and soybean meal. Yields of milk (27.9, 25.4, and 28.8 kg/d) were similar for all diets, while 4% FCM (24.0, 19.2, and 24.0 kg/d) and SCM (24.8, 20.2, and 24.8 kg/d) were lower when cows were fed regular sunflower seeds. Percentages of fat (3.14, 2.43, and 2.92%) were reduced when cows were fed regular sunflower seeds, but protein (3.00, 3.24, and 3.03%) and total solids (12.12, 11.34, and 11.82%) were similar for all diets. Milk fat from cows fed regular sunflower seeds contained the highest proportions of unsaturated fatty acids with the lowest proportions from cows fed the control diet. Dry matter intakes (22.8, 20.6, and 21.9 kg/d) were similar. Molar percentages of ruminal acetate were lower and propionate higher when cows were fed regular sunflower seeds than when fed high oleic acid sunflower seeds or control. The fatty acid composition of dietary fat influenced the fatty acid composition of cows milk.  相似文献   

7.
Thirty multiparous lactating Holstein cows were blocked according to time of calving and assigned to a 2 x 3 factorial arrangement of treatments in a randomized complete block design to evaluate the effects of two dietary energy concentrations either without or with bST (20.6 mg/d per cow) administered to cows that had not or had received bST during the preceding lactation. Subcutaneous injection of bST began 28 to 35 d postpartum and continued for 39 wk. The dietary energy concentration x bST interaction was not significant for any response variable. Compared with DMI of control cows, DMI was higher for cows receiving bST, being 1.6 and 2.4 kg/d higher for cows receiving bST for one and two lactations, respectively. Milk, fat, and protein yields were higher for cows receiving bST than for controls. Those receiving bST for a second lactation also produced more milk than controls until wk 20; thereafter, milk yields were similar to those of controls. Somatotropin administration had no adverse effect on udder health. Cows receiving bST tended to ovulate less regularly than controls, which may be attributed to their higher milk yield. However, BW gains during lactation were similar for all treatments, indicating that bST-treated cows built energy reserves for the subsequent lactation. Although energy concentrations of the diets had no significant impact on yield, the higher energy diet tended to depress milk fat concentration. Administration of bST to dairy cows for a second, consecutive lactation yielded responses similar for the first 20 wk of the study to those receiving bST for the first time. However, after wk 20, milk yield was less than that by cows receiving bST for the first lactation but similar to that of control cows.  相似文献   

8.
Twenty multiparous Holstein cows were used in a 16-wk trial. A block of 10 cows received a control diet, based on corn silage, and the other block of 10 cows successively received four diets with 1) an extruded blend of canola meal and canola seeds, 2) canola meal and whole canola seeds, 3) canola meal and ground canola seeds, or 4) canola meal and calcium salts of canola oil fatty acids. Canola fat represented about 2% of dietary dry matter. Compared to control cows, treated cows had similar dry matter intake, milk production, and daily milk output of true protein or fat. Protein contents of milk was decreased by all treatments, with a lower effect of extruded or whole canola seeds. Milk fat contents was lowered by all treatments, extruded seeds and calcium salts resulting in most important effects. All treatments lowered the percentage of fatty acids with 12 to 16 carbons in milk fat, increased C18:0 and cis-C18:1 percentages, and the proportion of liquid fat in butter between 0 and 12 degrees C. Calcium salts and, to a lesser extent extruded seeds, resulted in most important improvements of milk fatty acid profile and butter softness, whereas whole seeds had low effects.  相似文献   

9.
Bovine somatotropin (0 or 41.2 mg/d bST) and calcium salts of long-chain fatty acids (0 or .77 kg/d Ca-LCFA) were administered to 16 Holstein cows in early lactation. Cows remained on 0 or 41.2 mg/d bST for the entire 10 wk and received 0 or .77 kg/d Ca-LCFA in one of two 5-wk periods. Production data were recorded daily, milk fatty acids, and blood metabolites were determined once each period. Treatments did not affect feed intake. Fat-corrected milk (kg/d) and percentage of milk fat for cows receiving no supplementation, fatty acids alone, bST alone, and fatty acids and bST together were 33.8, 3.2; 33.5, 3.1; 37.4, 3.4; and 40.8, 3.5. Milk fatty acids below C16 were reduced with either bST or dietary fatty acids; C16 fatty acids were lower with bST but higher with dietary fatty acids; C18:0 fatty acids were reduced with dietary fatty acids; and C18:1 fatty acids were higher with either bST or dietary fatty acids. Blood acetoacetate concentrations were higher with both bST and dietary fatty acids, beta-hydroxybutyrate was not different, and FFA and insulin concentrations increased with bST. In this experiment, the energy supplied by Ca-LCFA acids enhanced the lactogenic effect of bST.  相似文献   

10.
Changing the milk fatty acid composition can improve the nutritional and physical properties of dairy products and their acceptability to consumers. A more healthful milk fatty acid composition can be achieved by altering the cow's diet, for example, by feeding supplemental fish oil (FO) or roasted soybeans (RSB), or by selecting cows with a more unsaturated milk fatty acid composition. We examined whether feeding supplemental FO or RSB to cows that had a more unsaturated milk fatty acid composition acted additively to produce butter with improved fatty acid composition and texture. Using a 3 × 3 Latin square design with 2 replications, we fed diets to multiparous Holstein cows (60 to 200 DIM) chosen for producing either more or less unsaturated milk fatty acid composition (n = 6 for each group) for three 3-wk periods. The control diet contained 3.7% crude fat and the 2 experimental diets contained, on a dry matter basis, 0.8% of additional lipids in the form of 0.9% of FO or 5% of RSB. The milk, collected in the third week of feeding, was used to make butter, which was analyzed for its fatty acid composition and physical properties. Dry matter intake, milk yield, and milk composition were not significantly affected by cow diet or by cow selection. Cows that produced a more unsaturated and healthful milk fat prior to the feeding study, according to a “health-promoting index” [HPI = (sum of % of unsaturated fatty acids)/ (%12:0 + 4 × %14:0 + %16:0)], maintained a higher HPI in their butter during the feeding study than did cows with a low HPI. Milk from cows fed supplemental FO or RSB yielded more unsaturated butters with a higher HPI. This butter also was softer when the cows were fed RSB. Feeding RSB to cows chosen for their high milk HPI yielded the most unsaturated butter with the highest HPI and softest texture. Thus, selecting cows with a more health-promoting milk fatty acid composition and feeding supplemental RSB can be used in combination to produce butter that has a consumer-friendly texture and a healthful fatty acid profile.  相似文献   

11.
Multiparous cows (n = 59) were blocked by expected calving date and previous milk yield and assigned randomly to treatments to determine effects of bovine somatotropin (bST; Posilac, Monsanto Animal Agricultural Group, St. Louis, MO) and source of dietary fat on milk fatty acid composition during the first 140 d in milk. Diets were provided from calving and included whole, high-oil sunflower seeds (SS; 10% of dietary dry matter; n-6/n-3 ratio of 4.6) as a source of linoleic acid or a mixture of Alifet-High Energy and Alifet-Repro (AF; Alifet USA, Cincinnati, OH; 3.5 and 1.5% of dietary dry matter, respectively; n-6/n-3 ratio of 2.6) as a source of protected n-3 fatty acids (15.7% 18:3, 1.3% 20:5, and 1.3% 22:6). Treatments were derived from a 2 × 2 combination of supplemental fat source (SS, AF) and with 0 (SSN, AFN) or 500 (SSY, AFY) mg of bST administered every 10 d from 12 to 70 d in milk and at 14-d intervals thereafter. Milk fatty acid composition was determined in samples collected from 32 cows (8 complete blocks) during wk 2, 8, and 20 of lactation. Data were analyzed as repeated measures using mixed model procedures to determine the effects of diet, bST, week of lactation, and their interactions. Proportions of 18:3 (4.02 vs. 3.59 ± 0.16%), 20:5 (0.52 vs. 0.41 ± 0.02%), and 22:6 (0.11 vs. 0.02 ± 0.02%) were greater and the n-6/n-3 fatty acid ratio (7.40 vs. 8.80 ± 0.30) was reduced in milk from cows fed AF compared with SS. Proportions of de novo-synthesized fatty acids increased and preformed fatty acids decreased as lactation progressed, but bST administration delayed this shift in origin of milk fatty acids. Transfer efficiency of 18:3, 20:5, and 22:6 from AF to milk fat averaged 36.2, 4.9, and 5.2%, respectively. These efficiencies increased as lactation progressed, but were delayed by bST. Apparent mammary Δ9-desaturase activity and milk conjugated linoleic acid (cis-9, trans-11 conjugated linoleic acid) content increased through the first 8 wk of lactation. Based on the product-to-substrate ratio of 14:1/14:0 fatty acids in milk, there was an interaction of diet and bST because bST decreased apparent Δ9-desaturase activity in SSY cows but increased it in AFY cows (0.10, 0.09, 0.08, and 0.09 ± 0.01 for SSN, SSY, AFN, and AFY, respectively). Feeding Alifet-Repro increased n-3 fatty acids in milk and bST prolonged the partitioning of dietary fatty acids into milk fat.  相似文献   

12.
Four multiparous Holstein cows were used in a 4 x 4 Latin-square design experiment to study the effects of different fat sources on milk production and composition, N utilization, follicular development, and prostaglandin secretion. Cows were fed 4 total mixed rations (TMR) based either on calcium salts of palm oil (Megalac), whole flaxseed, whole sunflower seed, or no supplementary fat (control). Feed intake and digestibilities were generally similar among treatments, except that ether extract digestibility was the lowest for cows fed the control diet. Milk yields were greater for cows fed whole flaxseed and Megalac (32.1 and 31.5 kg/d, respectively) than for those fed sunflower seed and control (25.9 and 24.8 kg/d, respectively). Milk protein concentration was significantly lower for cows fed Megalac (3.68%) compared with those fed flaxseed (3.87%) or control (3.92%). Concentrations of n-3 fatty acids and the n-6 to n-3 fatty acids ratio in milk were the highest and lowest, respectively, for cows fed whole flaxseed. There was an interaction between treatment and time for levels of 13,14-dihydro-15-keto-PGF(2alpha) in plasma; they were greater 30 and 45 min after the oxytocin challenge for cows that were fed sunflower seed compared with those fed either Megalac, flaxseed, or control. Moreover, when concentrations of 13,14-dihydro-15-keto-PGF(2alpha) in plasma were expressed as the area under the overall response curve from 0 to 120 min after the oxytocin injection, it tended to be greater for cows that were fed the sunflower diet compared with those fed either Megalac or flaxseed. In general, follicle dynamics were similar among treatments. These results suggest that feeding diets with high proportions of n-6 fatty acids (61% of total fatty acids for the sunflower seed diet) tended to increase the secretion of series 2 prostaglandins in blood.  相似文献   

13.
Twelve Holsteins in first lactation were used to investigate the relationship between energy balance and effects of bovine somatotropin (bST) on thyroid hormone metabolism and cytokine concentrations in serum. Six cows were fed for ad libitum intake and six cows were feed restricted to induce negative energy balance during two treatment periods of 6 d. During treatment periods, cows were administered vehicle or 40 mg of bST/d according to a crossover design. Between treatment periods was a 15-d recovery period, during which all cows were fed ad libitum. Cows that were fed ad libitum remained in positive energy balance during control and bST treatments, whereas cows that were fed for restricted intake were in negative energy balance during control and bST treatment periods. In both dietary groups, bST decreased energy balance. Milk production and the fat percentage of milk increased during bST treatment in both dietary groups. Fat-corrected milk yield was increased 13% by bST treatment. Serum concentrations of IGF-I did not differ between dietary groups but were greater during bST than control periods. Serum thyroxine concentration was decreased by bST treatment. Serum triiodothyronine and reverse-triiodothyronine were not altered by hormone treatment, but circulating concentrations of thyroid hormones were apparently reduced by dietary restriction. Neither hepatic nor mammary thyroxine 5'-deiodinase was affected by bST treatment. Plasma concentration of tumor necrosis factor-alpha, a potential regulator of thyroxine 5'-deiodinase, was not affected by bST treatment. Short-term treatment with bST did not influence thyroid hormone metabolism in lactating cows in positive or negative energy balance.  相似文献   

14.
Fifty-five multiparous Holstein dairy cows were used to evaluate the singular and combined effects of somatotropin and monensin treatments during the late dry period on postpartum metabolism and production. Treatments were 1) control (C); 2) injection of exogenous bovine somatotropin (bST); 3) TMR top dressed with 300 mg of monensin/day (M); and 4) monensin and somatotropin in combination (bST+M) during the last 28 days before expected parturition. A 500-mg subcutaneous injection of sustained release somatotropin was administered adjacent to the tail head at d -28 and -14 relative to expected calving. Diet and management were the same for all cows after parturition. Production and intake were measured daily until 63 d in milk. Milk composition, blood metabolites, and body weight and condition score were measured weekly. Prepartum glucose, nonesterified fatty acid, and blood urea nitrogen concentrations were not different among treatments. Cows on the M treatment tended to have greater dry matter intake postpartum than those on the C treatment and 30% lower plasma nonesterified fatty acid concentrations during wk 1 postpartum than all other treatments. Milk yield and milk fat yield were not different among treatments, but milk fat percent tended to be lower for the bST+M treatment than the C treatment. Changes in plasma amino acid concentrations were consistent with mobilization of skeletal muscle protein, possibly for use in gluconeogenesis. Results from this study provide evidence that prepartum feeding of monensin reduced plasma nonesterified fatty acid concentrations and may improve glucose metabolism of the periparturient dairy cow.  相似文献   

15.
Thirty-two Holstein cows (8 per treatment) averaging 195 d in milk were assigned to 70 d of treatment on the basis of production during a 14-d pretreatment period, which was used for covariate analysis. The experiment was a randomized block design with a 2 x 2 factorial arrangement of treatments. Factors were normal shade or shade plus evaporative cooling with pressurized spray, plus with or without the administration of bovine somatotropin (bST). Cows receiving bST were injected with 500 mg of bST every 14 d. All cows were fed the same total mixed rations twice daily at approximately 10% in excess of appetite, and water was offered free choice. There were no interactions between bST and the cooling system for any of the variables measured. Milk yield was increased by bST and tended to be greater for cooled cows. Fat percentages were increased by bST, and yields of fat, protein, and 3.5% fat-corrected milk, and the efficiency of conversion of dry matter to milk, whereas evaporative cooling increased body weights and protein yields, but decreased SNF and milk protein percentages. Rectal temperatures and respiration rates also were lower for cooled cows. And, bST increased nonesterified fatty acids in blood serum, suggesting that a part of the energy for increased milk production came from mobilization of body fat. Administration of bST effectively improved performance of cows under hot summer conditions whether evaporatively cooled or not.  相似文献   

16.
Texture of butter from cows with different milk fatty acid compositions   总被引:1,自引:0,他引:1  
Milk fatty acid composition and textural properties of butter are known to be affected by the cows' diets. We examined the phenotypic variation in milk fatty acid composition among cows fed the same diet to see if the variation was sufficient to produce butter with different textural properties. Ten cows were selected that tested higher (n = 5) or lower (n = 5) in their proportion of milk unsaturated fatty acids. Milk samples were collected a week after testing, and butter was prepared from the individual samples. Milk and butter samples were again analyzed for fatty acid composition. Butter at 5 degrees C was evaluated by a sensory panel for spreadability and by a texture analyzer at both 5 and 23 degrees C for hardness and adhesiveness. Milk and butter samples from cows with a more unsaturated milk fatty acid composition had a lower atherogenic index, and the butter samples were more spreadable, softer, and less adhesive. Thus, phenotypic variation in milk fatty acid composition among cows fed the same diet is sufficient to produce butter with different textural properties.  相似文献   

17.
The aim of this experiment was to compare the effects of increasing amounts of extruded linseed in dairy cow diet on milk fat yield, milk fatty acid (FA) composition, milk fat globule size, and butter properties. Thirty-six Prim’Holstein cows at 104 d in milk were sorted into 3 groups by milk production and milk fat globule size. Three diets were assigned: a total mixed ration (control) consisting of corn silage (70%) and concentrate (30%), or a supplemented ration based on the control ration but where part of the concentrate energy was replaced on a dry matter basis by 2.1% (LIN1) or 4.3% (LIN2) extruded linseed. The increased amounts of extruded linseed linearly decreased milk fat content and milk fat globule size and linearly increased the percentage of milk unsaturated FA, specifically α-linolenic acid and trans FA. Extruded linseed had no significant effect on butter color or on the sensory properties of butters, with only butter texture in the mouth improved. The LIN2 treatment induced a net improvement of milk nutritional properties but also created problems with transforming the cream into butter. The butters obtained were highly spreadable and melt-in-the-mouth, with no pronounced deficiency in taste. The LIN1 treatment appeared to offer a good tradeoff of improved milk FA profile and little effect on butter-making while still offering butters with improved functional properties.  相似文献   

18.
The objectives of this study were to determine the effects on milk yield, milk composition, ruminal fermentation and total tract nutrient utilization of feeding roasted whole sunflower seed to dairy cows. Three diets were formulated: a control diet with no sunflower seed (NSF), a raw sunflower seed diet (USF) and a roasted sunflower seed diet (RSF). The level of sunflower seed in USF and RSF was 78 g kg?1 of dry matter (DM). The effects of dietary treatments on yield and composition of milk were determined using nine Holstein cows in three 3 × 3 Latin squares. Three ruminally fistulated cows were used to determine the effects of dietary treatments on ruminal fermentation and total tract nutrient digestibilities. Cows fed sunflower seed diets consumed 8% less (P < 0.05) DM but produced similar amounts of milk as cows fed NSF. However, milk fat content (30.7 vs 33.5 g kg?1) and yield (1.33 vs 1.47 kg day?1) were lower (P < 0.05) for cows fed USF and RSF than for those fed NSF. Supplemental sunflower seed had no effect on concentrations and yields of other milk components. The concentrations of short‐chain (C4:0 to C12:0) and medium‐chain (C14:0 to C16:0) fatty acids were, respectively, 27% and 29% lower (P < 0.05) while those of long‐chain fatty acids (C18:0 to C18:3) were 51% higher (P < 0.05) in the milk of cows fed USF and RSF than for cows fed NSF. Ruminal pH, ammonia N and total volatile fatty acids were not affected by dietary treatments. Feeding sunflower seed (USF or RSF) reduced (P < 0.05) the concentration of acetate and increased (P < 0.05) the concentration of propionate. Total tract nutrient digestibilities were not affected by sunflower seed supplementation or by heat treatment. Supplementing dairy cow diets with unheated or roasted sunflower seed improved the efficiency of milk production and increased concentrations of long‐chain and polyunsaturated fatty acids. Feeding sunflower seed at up to 78 g kg?1 of diet DM had no adverse effects on nutrient utilization. Roasting had no additional benefits on milk yield or milk fatty acid composition. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Animal responses to dietary treatment may interact with metabolic state, which differs for cows across a wide range of milk yield. Responses to dietary saturated vs. unsaturated fatty acid (FA) supplement was evaluated using 32 multiparous Holstein cows arranged in a crossover design with 14-d periods. Treatments were 2.5% FA from unsaturated FA (calcium salts of palm FA) or saturated FA (prilled, hydrogenated free FA). Unsaturated FA treatments decreased dry matter intake (0.8 kg/d) and time spent ruminating (25 min/d) compared with saturated FA treatment. Treatments did not differ in milk or 3.5% fat-corrected milk yield. Intake and milk yield responses were not related to milk yield across cows. Saturated FA treatment increased milk protein and lactose concentrations, but treatment did not affect yield of milk components. Saturated FA treatment increased insulin over 25% and decreased nonesterified FA nearly 20% with no effect on plasma somatotropin, glucose, or β-hydroxybutyrate concentrations. Milk protein concentration and yield responses to treatment were positively correlated with pretrial fat-corrected milk yield. Milk protein response was not related to insulin response, supporting the importance of insulin sensitivity in control of milk protein synthesis. Unsaturated FA treatment decreased dry matter intake and rumination time compared with saturated FA treatment, consistent with reports of unsaturated fat increasing satiety and decreasing gut motility. Decreased milk protein synthesis by fat supplementation may be related to FA saturation and milk yield of cows.  相似文献   

20.
Saturated and unsaturated fatty acid supplements (FS) were evaluated for effects on yield of milk and milk components, concentration of milk components including milk fatty acid profile, and energy balance. Eight ruminally and duodenally cannulated cows and 8 noncannulated cows were used in a replicated 4 × 4 Latin square design experiment with 21-d periods. Treatments were control and a linear substitution of 2.5% fatty acids from saturated FS (SAT; prilled, hydrogenated free fatty acids) for partially unsaturated FS (UNS; calcium soaps of long-chain fatty acids). The SAT treatment did not change milk fat concentration, but UNS linearly decreased milk fat in cannulated cows and tended to decrease milk fat in noncannulated cows compared with control. Milk fat depression with UNS corresponded to increased concentrations of trans-10, cis-12 conjugated linoleic acid and trans C18:1 fatty acids in milk. Milk fat profile was similar for SAT and control, but UNS decreased concentration of short- and medium-chain FA. Digestible energy intake tended to decrease linearly with increasing unsaturated FS in cannulated and noncannulated cows. Increasing unsaturated FS linearly increased empty body weight and net energy gain in cannulated cows, whereas increasing saturated FS linearly increased plasma insulin. Efficiency of conversion of digestible energy to milk tended to decrease linearly with increasing unsaturated FS for cannulated cows only. Addition of SAT provided little benefit to production and energy balance, whereas UNS decreased energy intake and milk energy yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号