首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于支持向量机的高压断路器机械状态分类   总被引:5,自引:0,他引:5  
基于统计学习理论的支持向量机是专门研究少样本情况下的统计规律及学习方法,为故障诊断向智能化方向发展提供了途径.本文首先介绍了支持向量机的基本原理;其次提出了一种基于小波包和熵理论的振动信号特征提取方法,即利用小波包分解各节点重构信号的熵值反映信号与正常状态的偏移;最后详细介绍了这种新方法在断路器故障诊断中的具体应用,并与传统神经网络方法相比较.使用结果表明:无论在分类效果,还是学习速度方面,支持向量机都优于神经网络,更适合在断路器机械状态识别中的应用.  相似文献   

2.
机械故障是高压断路器运行过程中的主要故障之一,对高压断路器开展机械状态评估与预测,对提高高压开关设备和电网运行可靠性具有重要意义。文中基于支持向量机进行了高压断路器机械状态预测算法的研究。支持向量机是一种统计机器学习算法,以结构风险最小化为训练目标,能够很好地解决过学习、维数灾难、局部最优等传统机器学习算法遇到的问题。在具体的算法实现中,文中利用断路器前几次动作的触头行程和操作线圈电流曲线来预测下一次或者后几次动作数据。利用预测出来的机械动作数据对高压断路器进行故障诊断,可以发现高压断路器潜在的问题,从而达到机械状态预测的目的。此外,文中通过归一化、交叉验证、网格搜索等方法来确定算法参数和提高算法精度。最后,以高压断路器机械寿命试验数据为例测试了该算法,结果表明该算法能够很好地训练并预测机械动作行程曲线和操作线圈电流曲线。  相似文献   

3.
引入集合经验模态分解(EEMD)对Hilbert-Huang变换(HHT)方法进行改进,并将改进的HHT方法结合支持向量机(SVM)应用于高压断路器振动信号特征提取和触头超程状态识别中。采用EEMD提取反映振动信号局部特性的本征模态函数(IMF)分量,并计算IMF分量的Hilbert边际谱能量值,由此构造高压断路器触头超程状态特征量,利用得到的特征向量对SVM进行训练,实现高压断路器触头超程状态的自动识别。试验提取了高压断路器在不同触头超程下的振动信号并进行分析,结果表明所提方法能够有效识别高压断路器触头超程状态。  相似文献   

4.
提出一种基于支持向量机的三相异步电动机状态监测的方法。利用健康电机、轴承故障、定子匝间短路和转子断条的电机在不同负载条件下的各种数据,计算三线电压和电流计算总谐波失真形成特征向量,然后将其用于支持向量机的训练,并针对两个核函数对基于支持向量机的感应电机状态监测的性能进行了评估。仿真结果表明,所提出的方法的故障识别准确率超过98%,验证了其有效性。  相似文献   

5.
高压断路器操作过程中的振动信号能够反映断路器的机械状态。以高压断路器机械振动信号中振动事件的起始点作为特征参量,使用因子分析对特征量进行降维优化、支持向量机(Support Vector Machine,SVM)经粒子群参数寻优(Particle Swarm Optimization,PSO)后可对断路器的不同状态进行分类。本文对断路器机械故障进行了模拟试验,结果表明,因子分析和支持向量机算法适于诊断高压断路器的机械状态。  相似文献   

6.
基于支持向量机的微机保护装置状态评估的研究   总被引:3,自引:0,他引:3  
为了给微机保护装置的状态检修或计划检修提供科学的决策依据,提出了一种基于支持向量机的微机保护装置状态评估的方法.首先采用运行工况、定检信息作为支持向量机的输入特征向量,然后通过核函数将输入特征向量映射到高维特征空间,用支持向量机的模式识别方法来识别微机保护装置状态.实验结果表明SVM对微机保护装置进行状态评估是可行、有效的,在小样本情况下有较高的评估正确率和较好的稳定性,径向基核函数的SVM分类方法应用于微机保护装置状态评估最理想.同样条件下比人工神经网络的评估正确率高,速度快.  相似文献   

7.
基于支持向量机和DGA的变压器状态评估方法   总被引:1,自引:0,他引:1  
针对电力变压器结构、老化、故障机理复杂,具有不确定性,难以进行准确的状态评估的问题,将变压器健康状态分为良好、一般、注意、较差4种状态,提出了一种基于支持向量机的二叉树多级分类器变压器健康状态评估方法。该模型以变压器油中溶解气体的产气量和产气速率为评价指标,利用支持向量机挖掘评价指标与变压器健康状况之间的关系。  相似文献   

8.
基于模糊支持向量机的继电保护状态在线评价   总被引:1,自引:0,他引:1       下载免费PDF全文
继电保护状态评价工作一直以来都是状态检修的重点和难点。提出一种基于模糊支持向量机的继电保护状态评价方法。首先,获取智能变电站继电保护装置的历史数据,从中选择合适的状态评价因素,再对状态评价因素进行数据预处理,并根据状态巡视及故障记录计算装置在各巡视点的百分比剩余寿命,生成训练样本集。然后通过模糊支持向量机回归训练生成模型,利用在线巡视记录,对装置状态进行在线评估。并根据最差指标,判定装置的当前状态,作为最终的在线状态评价结果。仿真分析表明,方法通过引入样本权重,能够区分本装置样本和同型号装置样本的不同,使得算法能够兼顾装置的个性和家族性共性,并具备一定的抗噪能力。  相似文献   

9.
电动车蓄电池荷电状态估计的支持向量机方法   总被引:3,自引:1,他引:3  
结合电动车蓄电池容量判断问题,将支持向量机方法用于蓄电池荷电状态估计。针对蓄电池本身的非线性特性,使用核函数为非线性核的最小二乘支持向量机算法完成估计器的设计,得到了基于多项式核函数和径向基核函数的估计器。通过实验分析了两种核函数对估计器性能的影响。从实际应用出发,分析了如何合理简化估计器模型的复杂性。结果表明基于多项式核函数的估计器精度较低,但应用过程简单;基于径向基核函数的估计器精度较高,但其应用时需要存储部分训练数据,增加了应用的复杂性。具体应用可以根据实际环境,合理选择核函数,提高估计器的综合性能。  相似文献   

10.
孙鹏 《电工技术》2024,(3):150-152
常规的开关柜运行故障实时监测方法主要使用GSY20 测量传感器采集故障信号,易受局部放电作用影响,导致监测的异常幅值与实际异常幅值相差较大。因此,需要基于模糊支持向量机设计一种全新的开关柜运行故障实时监测方法。利用模糊支持向量机进行了故障实时监测分类,构建了开关柜运行故障实时监测中心,从而实现了开关柜运行故障实时监测。实验结果表明,所设计的监测方法监测的异常幅值与实际异常幅值接近,监测效果较好。  相似文献   

11.
Road-Sign Detection and Recognition Based on Support Vector Machines   总被引:3,自引:0,他引:3  
This paper presents an automatic road-sign detection and recognition system based on support vector machines (SVMs). In automatic traffic-sign maintenance and in a visual driver-assistance system, road-sign detection and recognition are two of the most important functions. Our system is able to detect and recognize circular, rectangular, triangular, and octagonal signs and, hence, covers all existing Spanish traffic-sign shapes. Road signs provide drivers important information and help them to drive more safely and more easily by guiding and warning them and thus regulating their actions. The proposed recognition system is based on the generalization properties of SVMs. The system consists of three stages: 1) segmentation according to the color of the pixel; 2) traffic-sign detection by shape classification using linear SVMs; and 3) content recognition based on Gaussian-kernel SVMs. Because of the used segmentation stage by red, blue, yellow, white, or combinations of these colors, all traffic signs can be detected, and some of them can be detected by several colors. Results show a high success rate and a very low amount of false positives in the final recognition stage. From these results, we can conclude that the proposed algorithm is invariant to translation, rotation, scale, and, in many situations, even to partial occlusions  相似文献   

12.
支持向量机在模拟电路故障诊断中应用   总被引:2,自引:0,他引:2  
支持向量机是建立在统计学习理论基础上的机器学习方法,结构简单,泛化能力强,对小样本分类具有良好的识别效果.本文提出了基于支持向量机的模拟电路故障诊断新方法,描述了电路故障特征的选取过程,建立了以支持向量机为基础的模拟电路故障诊断模型.并以双二次滤波电路为诊断实例,实验结果表明,该方法故障诊断准确率大于96.5%,优于传统方法.  相似文献   

13.
基于支持向量数据描述的局部放电类型识别   总被引:1,自引:0,他引:1  
唐炬  林俊亦  卓然  陶加贵 《高电压技术》2013,39(5):1046-1053
电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法。借鉴支持向量机(SVM)算法中最大化"间隔"的思想,建立了这种优化的支持向量数据描述(OR-SVDD)算法。该算法采用多分类方法中的"一对多"原理,用以解决对传统绝缘故障出现的识别率低、误识别、漏识别以及识别时间长等问题。通过仿真与实验结果表明,OR-SVDD算法能够对所有的数据进行正确描述,自动辨识拒识对象,训练时间低于传统的SVM算法,并具有较高的识别率,在电力设备在线监测与局部放电模式识别领域有良好的应用前景。  相似文献   

14.
《高压电器》2015,(12):79-83
为了快速、准确地对高压断路器发生的故障进行分析和诊断,确定故障的性质、类别和部位,提出了一种高压断路器故障诊断的新方法。首先对高压断路器分合闸线圈电流进行分析,提取电流和时间特征量形成特征向量,然后用遗传算法对最小二乘支持向量机(least square support vector machine,LS-SVM)参数进行优化,最后,将特征向量输入到优化后的最小二乘支持向量机中进行故障识别、分类。试验表明,该方法可以准确地识别断路器的多种故障类型,为断路器故障定位和状态检修提供了依据。与广泛使用的神经网络方法相比,该方法在样本较少时仍能获得较好的诊断效果,更适用于高压断路器等小样本设备的故障诊断。  相似文献   

15.
提出一种用于彩色序列图像复原的模型更新算法,计算退化图像序列各帧的图像质量,统计序列图像质量的方差,以方差差异作为判断准则,选择适当的模型进行复原。该算法扩展了基于支持向量机的彩色图像复原算法。仿真实验中,测试图像采用视频监控和智能交通领域常见的运动模糊进行退化处理。实验结果表明,该算法能有效标记出图像序列中质量发生显著变化的关键帧,复原效率得以提高,同时复原也更有针对性。  相似文献   

16.
全样本支持矢量数据描述模拟电路故障分类   总被引:2,自引:0,他引:2  
  相似文献   

17.
基于人工蜂群支持向量机的模拟电路故障诊断   总被引:1,自引:0,他引:1  
支持向量机因其良好分类能力被广泛应用于故障诊断中,但是它的核参数对其分类性能有较大影响,因此针对支持向量机参数选择问题,人工蜂群算法被用于搜索最优的支持向量机参数。首先对核参数进行浮点数编码,之后利用人工蜂群的全局优化特性实现核参数的最优化。利用UCI数据库中的数据对提出的方法进行了仿真验证,证明了其可行性,最终将其应用于模拟电路故障诊断中,利用ITC97中的标准电路进行仿真验证,表明方法的有效性。  相似文献   

18.
电场本体参数和静电闪络信号特征存在差异性,给控制器进行闪络信号识别带来了困难,传统识别方法误判率高,灵活性和鲁棒性较差。引入高斯分布噪声的虚拟训练集,结合实验电场实际采样信号构成复合训练集对闪络信号识别的支持向量机进行训练,解决训练集不均衡问题,并将得到的决策模型用于实际电场信号的实时识别。仿真与实际电场信号测试结果表明,所提方法具有运算速度快,准确率高,且具有很强的泛化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号