首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Poopó in Bolivia is a large, extremely shallow lake. The lake surface area is ≈3000 km2 at its spill‐over level, although it could dry out at times. The lake water level varies with the regional rains and with the water inflow from the Desaguadero River. This study focuses on using and comparing three different approaches to determine the hypsographic curve for the lake. As the lake is extremely shallow, depth measurements must be conducted from a slowly moving boat using a rod. The accuracy using echo‐sounding of the lake is poor. The second approach, which can be applied because the lake water level can vary considerably, and because the lake sometimes is almost dry, is to relate the lake surface area determined from satellite images to elevations determined from benchmarks on an island in the lake. The third method is an indirect one, in which the change in lake water volume over the period between two satellite images is determined from water balance computations and subsequently related to changes in the water surface area, as determined from the satellite images. Determination of the shoreline for different water levels in the lake is affected by errors related to the tilting of the water surface, and because wind forces the water to move several hundred metres towards the windward shore of the lake during a measurement survey.  相似文献   

2.
为揭示鄱阳湖和洞庭湖水文特征并综合分析其影响因素对湖泊水资源管理及江湖关系, 以两湖水系统为研究对象, 采用非参数秩次相关检验法( Mann2Kendall M2K) 分析方法和近 30 年两湖2流域2长江水位和流量长序列数据集, 解析湖泊水文变化特征、趋势和程度, 并通过两湖水文的对比来系统分析长江中游大型通江湖泊水文变化规律及其影响因素, 旨在对两湖流域水资源的整体认识和把控, 丰富对江-河-湖复杂水系统作用机制与内涵的深入理解。结果表明: 两湖水位在近 30 年总体上呈“上升-非稳定状态-下降” 3 个变化阶段。2003 年前, 鄱阳湖和洞庭湖水位总体呈上升趋势, 且在 1980- 2000 年间基本处于不稳定的波动状态, 2003 年后两湖水位呈明显的下降趋势。 Mann-Kendall 分析得出: 两湖水位可能在 2005 年左右发生明显突变, 且鄱阳湖和洞庭湖水位与之前相比, 最大降 幅分别可达 9. 4% 和 3. 4% , 表明两湖水位变化的趋势程度存在差异, 鄱阳湖水情变化的敏感程度要强于洞庭湖。 对长江干流的补水期洞庭湖为 4- 10 月, 鄱阳湖为 3- 8 月, 表明两湖对长江干流水文的不同调节补偿作用。  相似文献   

3.
Ancient Lake Titicaca (Bolivia, Peru) is home to several endemic species flocks, including representatives of the caenogastropod genus Heleobia. Preliminary analyses indicated that past geological and limnological events had an important effect on intralacustrine speciation events in Heleobia spp. However, the role of allopatric speciation due to vicariance events has not been assessed in detail before, even though several biogeographic barriers are conceivable. This study therefore assesses evolutionary patterns in the Heleobia flock in space and time based on mitochondrial DNA sequencing data of 103 specimens from Lake Titicaca and the surrounding Altiplano. Specifically, the degree of genetic distinctness of populations at various geographical scales and the timing of population expansion events were inferred.A TCS network analysis indicated that many terminal haplotypes belong to Altiplano species, whereas central haplotypes are typically associated with Lake Titicaca taxa. AMOVAs based on geographical groupings resulted in a significant partitioning of variance in Altiplano vs. Titicaca taxa but not in taxa from the northern vs. southern basins of the lake. Mismatch analyses suggested that the Heleobia flock underwent sudden spatial and demographic expansions during the Middle/Late Pleistocene. Based on these findings, the working hypothesis of vicariant speciation has to be rejected. Instead, a Middle Pleistocene lake level lowstand (possibly interglacial MIS9), which resulted in the desiccation of the southern and the salinization of the northern basin, may have caused a severe bottleneck in Heleobia spp. Recovery from these limnological conditions might then have triggered sudden spatial and demographic expansion events.  相似文献   

4.
Saline lakes have diminished considerably due to large-scale irrigation projects throughout the world. Environmental flow (EF) release from upstream reservoirs could help conserve and restore these lakes. However, experiences from regions lacking environmental legislation or with insufficient water resources management show that, despite EF allocation, farmers tend to use all available water for agriculture. In this study, we employed a new method for designing environmental flow release strategies to restore desiccated terminal lakes in arid and semi-arid regions with intensive cultivation within the catchment. The novelty of the method is that it takes into account farmers’ water use behavior and the natural flow regime in upstream systems to design an optimum monthly EF release strategy for reservoirs. We applied the method to the water resource system of Lake Urmia, once the largest saline lake in the Middle East and now one of the most endangered saline lakes in the world. The analysis showed that the EF released is exploited by lowland farmers before reaching Lake Urmia and that inflow to the lake from some rivers has decreased by up to 80%. We propose a new EF release strategy that requires a considerable change in practice whereby water is released in the shortest possible time (according to reservoir outlet capacity) during the period of lowest irrigation demand in winter. Restoring the lake to minimum ecological level would require 2.4–3.4 km3 EF allocation by different methods of release based on the recent condition (2002–2011) of the lake.  相似文献   

5.
Lake restoration in Denmark has involved the use of several different restoration techniques, all aiming to improve lake water quality and establishing clear‐water conditions. The most frequently used method, now used in more than 20 lakes, is the reduction of zooplanktivorous and benthivorous fish (especially roach (Rutilus rutilus) and bream (Abramis brama)) with the objective of improving the growth conditions for piscivores, large‐sized zooplankton species, benthic algae and submerged macrophytes. Piscivore stocking (mainly Esox lucius (pike)), aiming especially at reducing the abundance of young‐of‐the‐year fish, has been used in more than 10 lakes and frequently as a supplement to fish removal. Hypolimnetic oxidation, with oxygen and nitrate, has been undertaken in a few stratified lakes and sediment dredging, with the purpose of diminishing the internal phosphorus loading, has been experimented with in one large, shallow lake. Submerged macrophyte implantation has been conducted in some of the biomanipulated lakes to increase macrophyte abundance and distribution. Overall, the results from lake restoration projects, in the mainly shallow Danish lakes, show that external nutrient loading must be reduced to a level below 0.05–0.1 mg P L–1 under equilibrium conditions to gain permanent effects on lake water quality. By using fish removal, at least 80% of the fish stock should be removed over a period of not more than 1–2 years to obtain a substantial effect on lower trophic levels and to avoid regrowth of the remaining fish stock. Stocking of piscivores requires high densities (>0.1 individuals m–2) if an impact on the plankton level is to be obtained and stocking should be repeated yearly until a stable clear‐water state is reached. The experiments with hypolimnetic oxygenation and sediment dredging confirm that internal phosphorus loading can be reduced. Experience from macrophyte implantation experiments indicates that protection against grazing by herbivorous waterfowl may be useful in the early phase of recolonization.  相似文献   

6.
鄱阳湖水环境演变特征研究   总被引:2,自引:0,他引:2  
鄱阳湖水质安全是鄱阳湖生态经济区规划实施的重要物质基础,也是长江流域生态安全的重要组成。本文通过收集湖区主要水质监测断面2003-2008年逐月监测资料,采用单因子评价、湖泊富营养化评价、季节性肯达尔检验等分析主要河流、湖泊水环境演变特征。研究表明,鄱阳湖区现状水质较好,全年、汛期、非汛期的I-Ⅲ类水面积比例分别为63.9%、99.3%、40.8%,水体处于中营养一轻度富营养化状态。赣江、抚河、修河等人湖控制断面I一Ⅲ类水比例高于90%,乐安河、长江等控制断面I-Ⅲ类水质比例高于70%,湖口断面现状水质较差,Ⅳ类及以下水质比例高于30%。随着鄱阳湖流域社会、经济的发展,部分水质断面污染物浓度增加,湖泊I-Ⅱ类水面积比例呈下降趋势,需要采取有效措施,减少流域污染物排放量和人湖量,实现一湖清水的目标,为水利枢纽工程实施提供良好的水环境条件。  相似文献   

7.
Lake trout spawn primarily in lakes, and the few river-spawning populations that were known in Lake Superior were believed to be extirpated. We confirmed spawning by lake trout in the Dog River, Ontario, during 2013–2016 by the collection of and genetic identification of eggs, and we describe spawning meso- and microhabitat use by spawning fish. Between 2013 and 2016, a total of 277 lake trout eggs were collected from 39 of 137 sampling locations in the river. The majority of eggs (220) were collected at the transition between the estuary and the river channel crossing the beach. Lake trout eggs were most often located near the downstream end of pools in areas characterized by rapid changes in depth or slope, coarse substrates, and increased water velocities, where interstitial flows may occur. Depths in wadeable areas where eggs were found averaged 0.9?m (range: 0.4 to 1.3?m) and substrate sizes consisted of large gravel, cobble, and boulder; comparable to spawning characteristics noted in lakes. Water velocities averaged 0.66?m·s?1 (range: 0.33 to 1.7?m3·s?1) at mid-depth. This information on spawning habitat could be used to help locate other remnant river-spawning populations and to restore river-spawning lake trout and their habitat in rivers that previously supported lake trout in Lake Superior. The Dog River population offers a unique opportunity to understand the ecology of a river spawning lake trout population.  相似文献   

8.
Integrated Water Resources Management (IWRM) is a relatively new approach in Bolivia. However, it is now generally accepted that this approach needs to be established in order to find sustainable solutions for development and is actively promoted by the Water Ministry, especially in environmentally fragile regions, such as the Lake Poopo basin. The Lake Poopo basin is one of the poorest regions in the Bolivian Altiplano. It is confronted with severe water scarcity during the dry season, leading to low water quality, a high water-poverty index and low values of the watershed sustainability index. Furthermore, salinization and environmental degradation of soil and water are forcing people to migrate to urban areas. These are some of the factors underlying an ever-increasing complexity in integrated water resources management in the region. This paper proposes and develops a Multi-criteria Decision Analysis (MCDA) in the Lake Poopo basin, based on economic, social and environmental criteria in an uncertain decision environment in order to support stakeholders in managing their water resources. Saaty’s analytical hierarchy process (AHP) theory is applied here to solve the MCDA and to identify the alternatives using the highest expected utility value. The paper identifies the best solutions for existing conflicts, while promoting interaction with stakeholders and instruments in order to reach a sustainable strategy for water resources management in this water-scarce region.  相似文献   

9.
Management issues in the Lake Victoria watershed   总被引:2,自引:0,他引:2  
Lake Victoria is the largest lake in Africa (68 800 km2) and is the eighth largest lake in the world by volume. The three East African countries of Tanzania, Uganda and Kenya share Lake Victoria and its resources. The total annual catch of fish from the lake ranges between 400 × 106 kg and 500 × 106 kg, bringing these riparian countries a combined annual income of approximately US$250 000–500 000 from exports alone. Approximately 30 million people live in the riparian region and the catchment, with about 2 million of these depending directly or indirectly on fishing activities. Tragically, Lake Victoria’s extremely diverse fauna was decimated in only 30 years following the introduction of non‐native Nile perch in the early 1960s. An estimated 200 endemic cichlid species became extinct. Dramatic increases in overfishing, pollution from various sources, effects of noxious water weeds and other associated problems threaten the sustainability of the lake’s resources and the economies of the riparian governments and peoples. Regulations governing Lake Victoria’s resources are different in each country. The laws concerning treatment of effluents from point sources in the three countries are not harmonized, neither are implementation or enforcement provisions. The governments of Kenya, Uganda and Tanzania have begun to put in place regional mechanisms to address the lake’s many problems including the creation of a permanent regional international institution through the establishment of the Lake Victoria Fisheries Organization (LVFO). A strategic vision document and action plans have been developed. Efforts are being made at local, national and regional levels to control the water hyacinth, including manual pulling, mechanical harvesting and introduction of weevils that weaken hyacinth root systems. To address the problem of overfishing, fishermen committees at landing beaches have been put in place. Each country has committed to take all necessary measures including legislation to implement the decisions of the LVFO governing bodies. All three countries have agreed to adopt and enforce legislation and regulations prohibiting the introduction of non‐indigenous species to the lake and to enforce existing regulations regarding fisheries. A Global Environment Facility project which provides funding to the Lake Victoria Fisheries Organization addresses land use management, catchment forestation, fisheries research and management, water hyacinth control, industrial effluent treatment and municipal waste treatment.  相似文献   

10.
Protection of water environment while developing socio-economy is a challenging task for lake regions of many developing countries. Poyang Lake is the largest fresh water lake in China, with its total drainage area of 160,000 km2. In spite of rapid development of socio-economy in Poyang Lake region in the past several decades, water in Poyang Lake is of good quality and is known as the "last pot of clear water" of the Yangtze River Basin in China. In this paper, the reasons of "last pot of clear water" of Poyang Lake were analysed to demonstrate how economic development and environmental protection can be coordinated. There are three main reasons for contributing to this coordinated development: 1) the unique geomorphologic features of Poyang Lake and the short water residence time; 2) the matching of the basin physical boundary with the administrative boundary; and 3) the implementation of "Mountain-River-Lake Program" (MRL), with the ecosystem concept of "mountain as source, river as connection flow, and lake as storage". In addition, a series of actions have been taken to coordinate development, utilisation, management and protection in the Poyang Lake basin. Our key experiences are: considering all basin components when focusing on lake environment protection is a guiding principle; raising the living standard of people through implementation of various eco-economic projects or models in the basin is the most important strategy; preventing soil and water erosion is critical for protecting water sources; and establishing an effective governance mechanism for basin management is essential. This successful, large-scale basin management model can be extended to any basin or lake regions of developing countries where both environmental protection and economic development are needed and coordinated.  相似文献   

11.
Anthropogenic sources of total phosphorus (TP) and chloride (Cl?) to lakes and rivers have been issues of concern for many decades in the Great Lakes Basin with northern Boreal Shield headwater tributaries less well studied. In the Sturgeon River – Lake Nipissing – French River basin, a headwater basin of Georgian Bay, Lake Huron, water quality monitoring of major inflows to Lake Nipissing, the third largest inland lake located entirely within Ontario, is only available from the mid-1960s to the 1990s. During the period of 2015–2018, we conducted monthly water quality surveys of major and minor inflows for two water years and have generated the first chloride (Cl?) and total phosphorus (TP) elemental budgets for the lake. Review of available long-term concentration data indicate decreasing TP concentrations by decade in major inflows, but select inflows continue to exhibit concentrations above provincial objectives, including inflows from agricultural areas that are no longer part of provincial monitoring programs. Some inflows also show high average Cl? concentrations with potential influences (e.g., road salt, agricultural activities) to stream water quality throughout the year. Water and elemental budgets indicate that while specific runoff (l/s/km2) is quite similar across contributing catchments, yields of Cl? and TP (kg/ha/yr) are disproportionately higher in catchments with urban and agricultural activities. While uncertainties in the water balance and elemental yields remain, this first effort to quantify annual elemental budgets of Lake Nipissing highlights the need to develop community-based, spatially distributed water quality surveying for long-term ecosystem monitoring and future planning.  相似文献   

12.
为了探讨变化环境下开都河来水、人类水土开发和水利工程调节等对博斯腾湖水盐收支变化规律的影响,根据开都-孔雀河流域河流-湖泊-水利工程间的水力联系及水盐运移转化过程,构建了博斯腾湖水盐收支平衡模型,基于1955—2020年气象、水文、矿化度、开发利用的观测资料,分析了博斯腾湖逐年、分阶段和多年平均水盐收支变化规律。结果表明,受开都河来水和人类活动的影响,1955—2020年博斯腾湖水盐变化具有明显的4阶段特征。1987年以来水盐变化速率明显升高;焉耆盆地和孔雀河引水量较为稳定,开都河入湖水量占总入湖水量的81.89%,在1955—2020年博斯腾湖水位变化中起主导作用;1955—1987年农田排盐量占总入湖盐量的37.24%,其中1972—1986年农田排盐量接近总入湖盐量的50%,农田排盐量是湖水矿化度急剧升高的主要原因;1983年博斯腾湖西泵站运行后,湖水矿化度整体处于下降趋势,2020年降低到1.0 g/L以下。新时期在对开都-孔雀河流域严格遵守水资源三条红线控制的同时,加强扬水泵站、宝浪苏木分水闸及达吾提闸的联合运行,完全可以将湖水矿化度控制在1.0 g/L水平以下。研究结论可为博斯腾湖可持续利用和管理提供参考。  相似文献   

13.
为落实湖泊特征水位调整及控制工程调度运用办法修订,充分发挥调蓄湖泊的蓄水功能,研究探讨了焦岗湖非汛期蓄水位抬高至 18.30,18.50,19.00 m 三种情况对区域滩地淹没、防洪排涝、水利工程及其他涉水工程等方面的影响,提出了补偿排涝费、更新改造涵闸、疏浚排水通道、加固湖泊堤防等影响处理对策,并对供水、抗旱、生态效益进行了分析,建议非汛期蓄水位按 18.50 m 控制,远期结合治淮工程建设及社会经济发展研究进一步抬高方案。研究成果可为湖泊特征水位调整决策提供参考。  相似文献   

14.
鄱阳湖最小生态需水量研究   总被引:1,自引:0,他引:1  
本文分别运用历史水位资料、湖泊形态分析、生物空间分析以及水质指标等几种方法计算了鄱阳湖的最低水位要求,并通过咨询相关专家对几种方法的计算结果加以综合,得到鄱阳湖最低生态水位.运用水量平衡模型计算鄱阳湖最小生态需水量,本文选取95%作为计算模型各参数的参照频率,该频率体现了枯水年份来水量少、耗水量大的不利情况下维持鄱阳湖...  相似文献   

15.
仲志余  余启辉 《人民长江》2015,46(19):52-57
随着三峡水库及上游干支流控制性水库的逐步投运,长江中下游防洪形势得到极大改善。同时,由于蓄水拦沙,“清水”下泄,江湖关系已经并将继续发生变化,导致两湖水文情势进一步变化,对两湖地区水资源综合利用和水生态环境保护产生深刻影响。分析了洞庭湖江湖关系变化趋势和鄱阳湖枯水变化情势及其影响,结合湖区经济社会发展和生态环境保护对水利的要求,研究了两湖水量优化调控总体思路,提出了优化调控两湖水量的工程措施,为两湖生态经济区和长江经济带建设提供支撑和保障。  相似文献   

16.
可可西里地区主要湖泊自西向东分别为卓乃湖、库赛湖、海丁诺尔湖和盐湖。2011年9月自卓乃湖溃决后,大量湖水外泄,导致原本独立的4个湖泊建立了水力联系,盐湖成为最下游的尾闾湖,水文情势发生变化。利用周边地面监测站点及多次水文调查,统计分析了1961~2018年可可西里主要气候要素变化趋势,并从水量平衡角度探讨了水文情势变化后的盐湖水体补排、泄、蓄关系。结果表明:2011年之前,盐湖为独立的补排关系;2011年之后,由于青藏高原暖湿化变化,上游卓乃湖、库赛湖、海丁诺尔湖已相继蓄满,多余水量全部进入盐湖,导致其持续扩张。若盐湖水位持续上涨,湖水将外溢进入长江流域楚玛尔河支流清水河,对青藏多条"生命线"构成威胁。  相似文献   

17.
长江干流九江段与鄱阳湖不同季节的同位素特征   总被引:1,自引:0,他引:1  
詹泸成  陈建生  黄德文  王涛 《水利学报》2016,47(11):1380-1388
为了分析不同时期鄱阳湖与长江及其他各条河流的关系,初步探讨三峡水库运行对鄱阳湖水量的影响,对九江段长江干流、鄱阳湖地区河水、湖水进行了采样和氘氧稳定同位素分析。结果表明:水体同位素存在明显的时间和空间变化,可用于揭示湖泊与河流之间的关系。三峡补水调度过程能有效减少鄱阳湖春季的水量流失,4月份鄱阳湖流域已进入雨季,大量内河来水导致鄱阳湖水以较大的流量向长江补给;调洪削峰调度阶段,较高的长江水位对鄱阳湖存在一定的顶托作用,导致湖水难以排泄;三峡蓄水过程引起的长江水位降低加速了枯水期鄱阳湖水的流失。三峡水库的调度需要考虑到鄱阳湖流域水情,以免加重该流域丰水期的洪涝灾害和枯水期的水资源短缺。  相似文献   

18.
This study aimed to explore Lake Turkana's ecological reliance on hydrology and to determine the hydrological changes and consequences arising from the major hydropower and irrigation developments in the lake's basin. The major developments on Ethiopia's Omo River are especially significant as this river provides over 80% of the lake's annual freshwater influx and associated nutrients. The cascade of hydropower dams permanently dampens the natural hydrological cycles and lake level variability. The driving force of the flood influx to the lake is curtailed and the pattern of lake currents will adjust. Ultimately 80% of the river inflow to the lake will be regulated. Large volumes of water are required to initially fill the hydropower dam reservoirs. During 2015–16 when the huge Gibe III reservoir was filled, Lake Turkana's water level declined 2?m.The study has shown that large-scale irrigation schemes in the Lower Omo can potentially abstract 50% of the Omo River water, and that this would cause the lake level to shrink permanently to the detriment of the lake ecology. Possible lake level drops of over 15?m are demonstrated. The basin's natural capital is being replaced by large-scale plantation developments. The hydrological changes are drastic and the ecological consequences on Lake Turkana have not been fully understood. Without serious mitigation measures, Lake Turkana is a potential African Aral Sea disaster in the making, emulating what has happened to other great lakes such as Lake Chad.  相似文献   

19.
Watershed management in the Lake Ohrid region of Albania and Macedonia   总被引:3,自引:0,他引:3  
Lake Ohrid is the oldest lake in Europe and one of the oldest lakes in the world, formed 4–10 million years ago. Lake Ohrid serves as a refuge for numerous freshwater organisms from the tertiary period, whose close relatives can be found only as fossils. A breeding programme that artificially hatches the native and endemic trout supports the natural recruitment of lake Ohrid trout and since 1935 the lake has been stocked with more than 600 million young trout. The critical transboundary issue for Lake Ohrid water quality is phosphorus pollution. The current phosphorus load of the lake is estimated at 150 ton per year and needs to be reduced to 50 ton per year to keep the mean concentration of phosphorus below 7 mg m–3 in the lake water. In 1996, a Memorandum of Understanding between the Macedonian and Albanian governments was signed and a binational Lake Ohrid Management Board was established, with substantial funding by the Global Environmental Facility. Both governments agreed to undertake appropriate legal, institutional, investment and technical measures to protect Lake Ohrid. The Lake Ohrid Conservation Project has four main goals: (i) to develop the institutional legal and regulatory framework for environmental management in the Lake Ohrid watershed; (ii) to establish a comprehensive binational monitoring programme, (iii) to mobilize and secure commitments from all the stakeholders in the watershed who will need to take measures to prevent degradation of the lake; and (iv) to increase public awareness and participation. Harmonizing Albanian and Macedonian laws and regulations may be the Lake Ohrid Conservation Project’s greatest challenge, particularly on fisheries and wastewater treatment issues.  相似文献   

20.
Created 20–30 million years ago, Lake Baikal is one of approximately 13 ancient lakes in the world. Lake Baikal is also the deepest lake in the world with 365 rivers flowing into it and holding a full 20% of the liquid fresh water on the surface of the Earth. The lake stretches from the south‐eastern section of Siberia to portions of northern Mongolia. Administratively, it is divided between three members of the Russian Federation: the Republic of Buryatia, Irkutsk Oblast and Chita Oblast. Lake Baikal and its catchment area are characterized by considerable biodiversity and by a vast richness of natural resources. Well over half of the 2615 plant and animal species found in the Baikal region are endemic. Lake Baikal’s unusual biota includes the Baikal seal (Phoca sibirica) which lives nowhere else on Earth and is separated by 3220 km from its nearest relative. These freshwater seals give birth to their young in snow dens on the lake’s ice. The Baikal region is a spectacular example of coexistence among different cultures and faiths over centuries. Over 1000 archaeological remains of past cultures have been found near Lake Baikal shores. Preserving the unique lake culture, values and ecological, ethnic and cultural traditions of the local people is one of the key elements in developing a model for sustainable development in the Baikal region. Lake Baikal is currently still considered clear and healthy overall, however the number and type of pollution sources are growing, and local pollution can be severe. The main sources of pollution in Lake Baikal are industrial wastes and atmospheric emissions from the Baikalsk pulp and paper mill, atmospheric emissions from nearby industrial facilities, excessive nutrient loads from farming and sediment and wastes that flow into Lake Baikal through the Selenga River. In May 1999, protection of Lake Baikal was codified in federal law for the first time. Progress is being made on a number of fronts despite the turbulent political transformations in Russia in the last 10 years. For instance, in the Irkutsk region, stakeholders have worked together to reduce the flow of unpurified drainage into the lake by 10 million m3 year–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号