首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thiols, dialkylsulfides, and dialkyldisulfides are known to be chemisorbed with high affinity on gold. We have prepared DNAs of specific length and sequence carrying thiol groups at each end. For this purpose, primers with an HS-(CH2)6-arm at the 5'-end were used to amplify segments of plasmid DNA via the polymerase chain reaction. These thiolated DNAs bind strongly to the large, ultraflat Au surfaces which we have recently described [Hegner, M. et al. (1993) Surface Sci. 291, 39-46], and can be imaged by AFM in liquids (aqueous solutions or propanol). The lengths obtained in the AFM images are consistent with the DNA being in a native B-conformation.  相似文献   

2.
3.
4.
A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate.  相似文献   

5.
We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The bonding of enzymes to self-assembled monolayers (SAMs) of alkanethiols onto gold electrode surfaces is exploited to produce an enzyme biosensor. The attachment of glucose oxidase to a SAM of 3-mercaptopropionic acid was achieved using carbodiimide coupling. The resultant biosensor showed good sensitivity to glucose and a large dynamic range when measured amperometrically via the p-benzoquinone mediator. On the other hand, subsequent platinization of the enzyme-SAM electrode allowed hydrogen peroxide produced in the enzyme reaction to be detected directly, thus obviating the need for an artificial redox mediator. The performance of such sensors constructed on bulk gold electrodes was evaluated and finally compared to that of some preliminary thin-film gold electrodes. Biosensors constructed using the two alternative electrode surfaces have quite different sensitivities, thus reflecting the influence of the anchoring surface on the performance of the biosensor.  相似文献   

14.
Scanning force microscopy (SFM) was used to visualize complexes of Escherichia coli RNA polymerase.sigma54 (RNAP.sigma54) and a 1036 base-pair linear DNA fragment containing the glnA promoter. In order to preserve the native hydration state of the protein-DNA complexes, the samples were injected directly into the SFM fluid cell and imaged in buffer. With this protocol, an apparent bending angle of 26(+/-34) degrees was determined for the specific complexes at the promoter. The bending angle of the unspecifically bound RNAP.sigma54 showed a somewhat broader distribution of 49(+/-48) degrees, indicating the existence of conformational differences as compared to the closed complex. In about two-thirds of the closed complexes, the RNA polymerase holoenzyme was located in a lateral position with respect to the DNA and the bend of the DNA was pointing away from the protein. This conformation was consistent with the finding that for the complexes at the promoter, the apparent contour length was reduced by only about 6 nm in buffer as compared to the free DNA. From these results we conclude that in the closed complex of RNAP. sigma54, the DNA was not wrapped around the polymerase, and we present a model for the trajectory of the DNA with respect to the RNA polymerase. The images acquired in buffer were compared to samples that were washed with water and then dried before imaging. Two artefacts of the washing and drying process were detected. First, extensive washing of the sample reduced the number of the specific complexes bound at the promoter (closed complex of RNAP.sigma54) from about 70% to 30%. This is likely to be a result of sliding of the RNAP.sigma54 holoenzyme along the DNA induced by the washing process. Second, the apparent DNA shortening of the contour length of RNAP.sigma54-DNA complexes at the promoter as compared to the contour length of the free DNA was 22 nm for the dried samples as opposed to only 6 nm for the undried samples imaged in buffer. This suggests an artefact of the drying process.  相似文献   

15.
We have worked out a procedure for covalent binding of native biomacromolecules on flat gold surfaces for scanning probe microscopy in aqueous buffer solutions and for other nanotechnological applications, such as the direct measurement of interaction forces between immobilized macromolecules, of their elastomechanical properties, etc. It is based on the covalent immobilization of amino group-containing biomolecules (e.g., proteins, phospholipids) onto atomically flat gold surfaces via omega-functionalized self-assembled monolayers. We present the synthesis of the parent compound, dithio-bis(succinimidylundecanoate) (DSU), and a detailed study of the chemical and physical properties of the monolayer it forms spontaneously on Au(111). Scanning tunneling microscopy and atomic force microscopy (AFM) revealed a monolayer arrangement with the well-known depressions that are known to stem from an etch process during the self-assembly. The total density of the omega-N-hydroxysuccinimidyl groups on atomically flat gold was 585 pmol/cm(2), as determined by chemisorption of (14)C-labeled DSU. This corresponded to approximately 75% of the maximum density of the omega-unsubstituted alkanethiol. Measurements of the kinetics of monolayer formation showed a very fast initial phase, with total coverage within 30 S. A subsequent slower rearrangement of the chemisorbed molecules, as indicated by AFM, led to a decrease in the number of monolayer depressions in approximately 60 min. The rate of hydrolysis of the omega-N-hydroxysuccinimide groups at the monolayer/water interface was found to be very slow, even at moderately alkaline pH values. Furthermore, the binding of low-molecular-weight amines and of a model protein was investigated in detail.  相似文献   

16.
17.
N-Hydroxysuccinimide-terminated self-assembled monolayers with linear (CH2)10 chains were prepared on ultraflat Au(111) surfaces from dithiobis(succinimidylundecanoate). These monolayers, which are covalently chemisorbed to gold via thiolate bonds, form a highly reactive amino-group specific carpet at the liquid-solid interface. Proteins bind to it covalently in aqueous buffers under mild conditions; this provides a (general) procedure for protein immobilization for scanning probe microscopy. Using this technique, we have obtained what we believe are the first scanning force microscopy images of clathrin cages and of their in situ disassembly, yielding typical triskelia under non-denaturing conditions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号