首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 944 毫秒
1.
Carbon fibres are particularly well suited for use in a multifunctional lightweight design of a structural composite material able to store energy as a lithium-ion battery. The fibres will in this case act as both a high performance structural reinforcement and one of the battery electrodes. However, the electrochemical cycling consists of insertions and extractions of lithium ions in the microstructure of carbon fibres and its impact on the mechanical performance is unknown. This study investigates the changes in the tensile properties of carbon fibres after they have been subjected to a number of electrochemical cycles. Consistent carbon fibre specimens were manufactured with polyacrylonitrile-based carbon fibres. Sized T800H and desized IMS65 were selected for their mechanical properties and electrochemical capacities. At the first lithiation the ultimate tensile strength of the fibres was reduced of about 20% but after the first delithiation some strength was recovered. The losses and recoveries of strength remained unchanged with the number of cycles as long as the cell capacity remained reversible. Losses in the cell capacity after 1000 cycles were measured together with smaller losses in the tensile strength of the lithiated fibres. These results show that electrochemical cycling does not degrade the tensile properties which seem to depend on the amount of lithium ions inserted and extracted. Both fibre grades exhibited the same trends of results. The tensile stiffness was not affected by the cycling. Field emission scanning electron microscope images taken after electrochemical cycling did not show any obvious damage of the outer surface of the fibres.  相似文献   

2.
Recently, the inclusion of different types of fibres into geopolymers, as reinforcement, has amplified due to the rapid increase in geopolymers developments. In spite of geopolymers have prospective properties such as low carbon footprint, low consumption of energy, good compressive strength, resistance to fire, resistance to flame, resistance to corrosion and good durability, they undergo from low tensile strength and flexural strength. To avoid these shortages, different types of fibres could be incorporated into geopolymers to enhance their toughness, tensile strength and ductility. The current survey aims to review the effect of different types of fibres named polypropylene (PP), polyvinyl alcohol (PVA), carbon and glass fibres on the fresh and hardened properties of geopolymers.  相似文献   

3.
Low cost optical fibres have recently become readily available for telecommunications purposes. Silica fibres are characterised by high elastic strains to failure. The feasibility of using these fibres for structural integrity monitoring particularly for offshore structures is investigated. The basis of the technique is that a fibre may be bonded to a critical part of a structure and provides an optical path which will be broken if the fibre fails due to plastic strain or crack opening in the critical area.
Groups of fibres which have been given predetermined fracture strains by surface etching were encapsulated in special packs. These packs were bonded to steel and concrete tensile specimens. Strain transfer occurred successfully between the specimens and individual fibres. The distribution of strain to fibre fracture appeared to be uniform along the fibre. The use of several fibres with a range of fracture strains caused fibres to break progressively with increasing strain. For applications to offshore structures it has been found possible to use water-repellent adhesives which can be applied and cured in sea water and suffer no deterioration.
The advantages of this system include versatility, relatively low cost, adaptability to continuous monitoring and the possibility of being fitted retrospectively and refitted after repair operations.  相似文献   

4.
Raman and luminescence spectroscopy have been used for the first time to determine the interface fracture energy for single-fibre composites. By using the measured fibre stress distributions in single-fibre fragmentation composite specimens and a simple energy-balance scheme, the energy for the initiation of interfacial debonding has been estimated for carbon (T50) and α-alumina (PRD-166 and Nextel 610) fibres embedded in epoxy resins. It has been found that the interface fracture energy shows good sensitivity to changes in the level of fibre/matrix adhesion due to surface treatment and sizing of the fibres. It is also found that the values of interface fracture energy correlate well with measured values of interfacial shear strength determined for the same fibre/matrix systems.  相似文献   

5.
Conventional materials (natural and man-made fibres, plastics, wood, paper etc.) used in everyday life are, in different degrees, liable to ignition. This fact has impelled the development of new materials which are inherently resistant to flame and heat or to modify these materials by using flame-retardant additives/treatments to meet the stringent regulations set for fire protection. This paper gives an overview of the newly developed inherently flame-retardant fibres and engineering plastics specifically aramids, polyimides, polybenzimidazole, novoloid, polyphenylene sulphide and carbon fibres. The use of various additives and FR finishes has also been highlighted.  相似文献   

6.
Chitin and chitosan fibres: A review   总被引:2,自引:0,他引:2  
Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. It has become of great interest not only as an underutilized resource, but also as a new functional material of high potential in various fields and the recent progress in chitin chemistry is quite noteworthy. The purpose of this review is to take a closer look at fibres made of chitin and its derivatives. Based on the current research and existing products, some new and futuristic approaches, in the development of novel fibres and their applications have been thoroughly discussed.  相似文献   

7.
Hybrid unidirectional composite materials, consisting of alternately laminated layers of Kevlar-49 fibres and carbon fibres in an epoxy resin, have been studied. Before embedding, the carbon fibres were coated with a Nylon 6,6 film by an interfacial in-situ polymerization technique. Emphasis is given to the mechanical properties of the hybrid composites based on coated carbon, with those based on uncoated carbon, for various values of partial volume fraction of the carbon fibres, Vcf, polyamide content deposited on the carbon fibres, CN, and total fibre (Kevlar + carbon) volume fraction, Vf.  相似文献   

8.
Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young’s moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography.  相似文献   

9.
The interfaces between high-modulus PAN-(T50) and mesophase pitch-based (P55) carbon fibres and an epoxy matrix have been studied by using the conventional fragmentation test in conjunction with polarised-light optical microscopy. Raman spectroscopy has also been used to follow stress transfer from the matrix to the fibres for the same fragmentation geometries. The level of fibre/matrix adhesion and mechanisms by which the stress is transfered from the matrix to the fibres has been determined from both the stress birefringence patterns and strain-induced Raman band shifts in the fibres. The values of interfacial shear strength have been determined by means of both the conventional analysis and the Raman technique. It is found that the Raman method gives a much more detailed picture of stress transfer in the test specimens and that the two methods give somewhat different values of the interfacial shear strength. The values of interfacial shear stress have been discussed with respect to fibre surface energy, surface chemistry and surface morphology. It was found that the surface chemical functional groups appear to have no direct correlation with interfacial shear strength. Furthermore, it appears that mechanical interlocking due to surface roughness could contribute to the higher values of interfacial shear strength determined for the PAN-based fibre.  相似文献   

10.
Nanoclay and carbon nanotubes (CNT) have been in focus recently as means of enhancing β phase crystals formation in poly(vinylidene fluoride)(PVDF). Dominantly, the so-far work has been carried out on films/thin sheets filled with nanoclay. It has been found, mainly from combined XRD and DSC data, that nanoclay influences the PVDF structure, and particularly the β phase crystals formation is enhanced. Results published by various groups are in fairly good agreement. There are no results for nanoclay filled melt-spun PVDF fibres.The influence of CNT on PVDF structure has been less studied. XRD data indicating an enhancing role of multi-wall carbon nanotubes (MWNT) on β phase crystals formation in solution compounded PVDF films are available. Published results for MWNT/PVDF films are not in good agreement. The only study into single-wall carbon nanotube (SWNT)/PVDF has been made on electrospun nanofibres.We explore above findings towards melt-spun nanofilled PVDF fibres. We present new results obtained by us for melt-spun PVDF fibres containing non-functionalized and amino-functionalized double-wall carbon nanotubes (DWNT). The key finding is that amino-DWNT can influence the β to α polymorphic balance.  相似文献   

11.
This paper investigates the effect of including randomly spaced palm fibres in a soil matrix. The fibres in date palm have special properties such as low costs, plenitude in the region, durability, lightweight, high tension capacity and relative strength against deterioration. Thus, it is possible to use the palm fibres as an alternative low-cost natural material for soil reinforcement. As the objective of this research was to mix the soil and date palm fibres to use in the construction of soil roads, especially village road, we discuss the influence of date palm fibres on CBR (California Bearing Ratio) strength of fine sand. CBR tests were conducted under dry and submerged conditions. The durability of fibres was also investigated using the plain fibres and fibres coated with bitumen. Some samples were soaked for several months before being loaded. The results show that the addition of palm fibres increases the CBR strength of the sand specimens significantly. It is also seen that the sliding strength controls the failure of the specimens rather than the rupture strength.  相似文献   

12.
合成了聚醚砜醚酮酮(PESEKK),研究了纯树脂的热、力学性能。制备了炭纤维和聚醚砜醚酮酮(炭纤维是标准T300)复合材料,着重研究了此新型复合材料的力学性能。结果表明,随着复合材料中PESEKK树脂质量比增加,T300CF/PESEKK复合材料的拉伸强度、弯曲强度、拉伸模量和弯曲模量逐渐增加。其中弯曲强度和弯曲模量增加的幅度比拉伸强度和拉伸模量增加的幅度更大。当PESEKK质量分数为60%左右时,复合材料的综合力学性能达到最佳值。因此聚醚砜醚酮酮可作为增强炭纤维力学性能的基体树脂。  相似文献   

13.
The aim of this study was to evaluate the usefulness of a powder-coating method to impregnate glass fibres with polymethylmethacrylate (PMMA) for dental purposes. The continuous unidirectional E-glass fibres, the surface of which had been treated with precured silane, were powder-coated with spherical PMMA particles. Before the powder-coated prepregs were used, the incorporated PMMA powder was dissolved with methylmethacrylate monomer. The degree of impregnation of the polymerized composite was determined with a scanning electron microscope. The results revealed that the mean degree of impregnation varied from 0.87 to 0.92, being lower in the heat-cured PMMA group (which simulated fabrication of a new denture), and higher in the autopolymerizing group (which simulated the repair of a fractured denture). The means between the two groups did not, however, differ significantly (p=0.249). The results suggest that, even though the method has some shortcomings in terms of dental laboratory technology, the powder-coating method can be used to fabricate or repair acrylic resin-based dentures.  相似文献   

14.
本工作以平面Charpy冲击、缺口与非缺口Charpy冲击全面地研究了本实验所制备的超高模量聚乙烯(UHMPE)纤维-碳纤维混杂增强环氧复合材料的冲击性能。同时根据试样在冲击过程中的载荷-时间曲线以及试样在冲击破坏后的形貌对该类混杂复合材料的冲击破坏过程与冲击破坏模式进行了分析。结果表明,将UHMPE纤维与碳纤维相混杂,复合材料的冲击性能呈现出明显的正混杂效应。  相似文献   

15.
采用不同的预制体和致密化方法制备了密度不同的5种炭/炭复合材料(密度范围1.77g/cm3~1.85g/cm3)。用氧-乙炔焰对试样进行了烧蚀试验,并用SEM表征了烧蚀后材料的形貌。结果表明:烧蚀后,与乙炔焰成30o角的纤维变成楔形,而与火焰平行的纤维变成直径为3.5μm~4.5μm的针状,针状纤维更易被火焰烧蚀而钝化。部分宏观孔(直径为1.0mm~1.26mm)、针状微孔及界面裂纹等缺陷处更易被烧蚀而变成烧蚀坑。包裹纤维的沥青炭层由于热解炭基体的不连续而出现了严重的剥蚀。高密度材料(1.85g/cm3)具有良好的抗烧蚀性能。  相似文献   

16.
ABSTRACT

The use of polymer-based composites has been gaining popularity in the industry over the last few decades. Their high strength to weight ratio and high fatigue resistance make these composites the preferred materials for a wide variety of applications. The current trend has inclined towards hybrid fibre reinforced composites owing to their outstanding characteristics compared to non-hybrid composites. Numerous research works have been conducted to study the fatigue life behaviour of such composite materials. This study addressed the monotonic and dynamic performance of non-hybrid and hybrid natural fibre based composite materials, and the factors that influence their fatigue performance, along with the stiffness decay of each composite material. Most studies have shown the superior potential of using natural fibres in place of synthetic fibres in those critical applications that involve tensile and cyclic loading.  相似文献   

17.
Natural plant fibre composites have been developed for the production of a variety of industrial products, with benefits including biodegradability and environmental protection. Bamboo fibre materials have attracted broad attention as reinforcement polymer composites due to their environmental sustainability, mechanical properties, and recyclability, and they can be compared with glass fibres. This review classifies and describes the various procedures that have been developed to extract fibres from raw bamboo culm. There are three main types of procedures: mechanical, chemical and combined mechanical and chemical extraction. Composite preparation from extracted bamboo fibres and various thermal analysis methods are also classified and analysed. Many parameters affect the mechanical properties and composite characteristics of bamboo fibres and bamboo composites, including fibre extraction methods, fibre length, fibre size, resin application, temperature, moisture content and composite preparation techniques. Mechanical extraction methods are more eco-friendly than chemical methods, and steam explosion and chemical methods significantly affect the microstructure of bamboo fibres. The development of bamboo fibre-reinforced composites and interfacial adhesion fabrication techniques must consider the type of matrix, the microstructure of bamboo and fibre extraction methods.  相似文献   

18.
A theoretical analysis based on the assumed form of the strain field surrounding a crack bridged by reinforcing elements has been used to examine the growth of a crack propagating transversely to the fibres in hybrid fibre composites. An intermingled carbon fibre/glass fibre polymer matrix system has been considered. Two situations have been investigated. In the first of these the effect of the addition of carbon fibres on the development of cracks resulting from the failure of the glass fibres by stress corrosion has been studied. The analysis indicates that crack growth can be severely inhibited by a 5% volume fraction of type III carbon fibres. The analysis has been used also to investigate the process by which strong high failing strain glass fibres inhibit the growth of cracks caused by the fracture of localized clusters of low failing strain carbon fibres. The predictions of this analysis agree with existing experimental data on glass fibre/carbon fibre hybrids.  相似文献   

19.
高性能聚酰亚胺纤维   总被引:2,自引:0,他引:2  
本文综述了聚酰亚胺纤维的性能及其制备工艺,以及聚酰亚胺纤维在结构方面的研究及纤维成型新技术、新工艺。  相似文献   

20.
国产粘胶基碳纤维强度的两种统计分布   总被引:4,自引:1,他引:4  
吴琪琳  潘鼎 《材料导报》2000,14(11):55-56,52
测定了粗细不同的两种粘胶原丝及其碳纤维的单丝强度,并用Gauss和Weibull两种方法对比其分布进行了对比分析研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号