首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma electrolytic oxidation (PEO) is a unique surface treatment technology which is based on anodic oxidation forming ceramic oxide coatings on the surface of light alloys such as Mg, Al and Ti. In the present study, PEO coatings prepared on AZ91D, AZ31B, AM60B and AM50B Mg alloys have been investigated. Surface morphology and elemental composition of coatings were determined using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). SEM results showed that the coating exhibited a porous top surface layer and a subsequent dense layer with micro-pores and shrinkage cracks. Phase analysis of coatings was carried out by X-ray diffraction (XRD). XRD analyses indicated that PEO coatings on AZ alloys had higher amount of Periclase (MgO) followed by the presence of Spinel (MgAl2O4) e.g. on the AZ91D alloy compared to that on AM series alloys. In order to examine the effect of substrate composition on adhesion strength of PEO coating scratch tests were carried out. Electrochemical corrosion tests were undertaken by means of potentiodynamic polarization technique in 3.5% NaCl solution at room temperature (20 ± 2 °C). Corrosion test results indicated that the corrosion rates of coated Mg alloys decreased by nearly two orders of magnitude as compared to bare Mg alloys. PEO coatings on AZ series alloys showed better corrosion resistance and higher adhesion properties than AM series alloys. In addition to the PEO processing parameters, such are mainly attributes of the compositional variations of the substrate alloys which are responsible for the formation, phase contents and structural properties of the PEO coatings.  相似文献   

2.
Oxide coatings on AZ91D alloy were prepared using micro-arc oxidation techniques at a low applied voltage, in electrolyte solutions with hexamethylenetetramine and sodium borate additives. The different electrolyte solutions changed the applied voltage from 400 to 200 V and reduced the micro-pore size of the oxide coating on the AZ91D alloy.The corrosion current of the oxide coating changed from 3.6 × 10− 5 to 4.2 × 10− 7 A/cm2 when the additives were added to the plating solution. When sodium borate was added to the plating solution, the Na content of the oxide coating was increased, improving its anti-corrosion ability. Moreover, the surface roughness (Ra) was reduced from 10.12 to 1.22 by the addition of 0.1 M hexamethylenetetramine to the electrolyte. The cracks in the oxide coating were also smoothed by the addition of 0.1 M hexamethylenetetramine, reducing the thermal stress.In this work, the addition of the aforementioned additives to the alkaline silicate phosphate electrolyte reduced the applied voltage and modified the oxide coating, resulting in better anti-corrosion ability.  相似文献   

3.
The ability to quantify surface mechanical properties is valuable for assessing the quality of thermal spray coatings. This is especially important for prostheses where loading is placed directly on the surface. Hydroxyapatite was classified to small (20-40 μm), medium (40-60 μm) and large (60-80 μm) particle sizes and thermal sprayed to produce a coating from spread solidified hydroxyapatite droplets. It was revealed for the first time, that nanoindentation can be successfully used to determine the hardness and elastic modulus on the surface of well spread solidified droplets at the hydroxyapatite coating surface. Comparison with indentation results from polished cross-section exhibited comparable values and statistical variations. The hardness was 5.8 ± 0.6, 5.4 ± 0.5 and 5.0 ± 0.6 GPa on coatings produced from small, medium and large sized powder. Similarly, the elastic modulus decreased from 121 ± 7, 118 ± 7 to 114 ± 7 GPa, respectively. Use of several indentation loads gave comparable results with sintered hydroxyapatite suggesting good inter-splat bonding within the coating. MicroRaman spectroscopy and X-ray diffraction confirmed a larger degree of dehydroxylation for the smaller particles also revealing a lower elastic modulus. This shows the influence of particle size and possibly dehydroxylation of hydroxyapatite on the mechanical properties of the coating surface.  相似文献   

4.
Electrodeposition of aluminium coatings upon AZ91D in aluminum chloride/1-ethyl-3-methylimidazolium chloride ionic liquid was achieved. Post-plating heat treatment processes compatible with AZ91D solution treatment (420 °C) and aging treatment (200 °C) were explored to improve coatings adhesion and hardness, and to maintain corrosion resistance. 420 °C treatment produced a β-phase (Mg17Al12) enriched two-phase coating; whilst treatment at 200 °C leads to a tri-layer structure, rich in γ-phase (Mg2Al3). The 200 °C treatment was shown to be most effective for corrosion resistance, eradicating water reduction as the principal cathodic reaction and increasing surface hardness.  相似文献   

5.
The corrosion behaviour of aluminium/silicon carbide (Al/SiC) composite coatings deposited by thermal spray on AZ31, AZ80 and AZ91D magnesium-aluminium alloys was investigated by electrochemical and gravimetric measurements in 3.5 wt.% NaCl solution at 22 °C. Corrosion products were examined by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and low-angle X-ray diffraction (XRD). Al/SiC composite coatings in the as-sprayed state revealed high level of porosity with poor bonding at the Al/SiC and coating/substrate interfaces, which facilitated degradation of the magnesium substrates by a mechanism of galvanic corrosion. Cold-pressing post-treatment produced more compact coatings with improved corrosion performance in 3.5 wt.% NaCl compared with as-sprayed coatings.  相似文献   

6.
镁合金化学转化膜上化学镀镍的研究   总被引:1,自引:0,他引:1  
将化学转化和化学镀镍结合在一起,先对AZ91D镁合金进行化学转化处理,然后在转化膜上进行化学镀镍.并用扫描电镜(SEM)、X射线衍射技术(XRD)研究了镀层表面形貌和组织结构及处理后镁合金的耐蚀性能.结果表明:两种工艺结合得到的镀层使腐蚀电位正移0.83 V,腐蚀电流降低,有效的提高了镁合金耐腐蚀性能.  相似文献   

7.
Multi-step Ni electroplatings were applied to AZ91D following the development of a homogenisation pre-treatment. The Ni coating was well adhered, as verified by thermal shock testing, and provided corrosion protection in 3.5 wt.% NaCl for 74 h at a coating thickness of ∼15 μm. Being a cathodic coating, further protection in the presence of defects was not demonstrated herein, however realisation of quality Ni coatings on Mg is technologically important. To this end, achieving microstructural homogeneity on AZ91D is critical prior to plating or coating (such as electroless plating and chemical conversion coating) multi phase Mg-alloys.  相似文献   

8.
In this work, CeO2/stannate multilayer coatings on AZ91D magnesium alloy were successfully obtained by chemical conversion and sol–gel dip coating. The stannate conversion coatings were prepared from a stannate aqueous bath containing Na2SnO3, CH3COONa, Na3PO4 and NaOH at different temperatures and immersion times. Ceria films were produced on stannate/AZ91D starting from Ce(III) nitrate solutions in H2O. In some cases, the PVA was added as chelating agent. Ceria top coatings were fired at 200 °C for 1 h. Coating microstructure was examined by FE-SEM. Finally, the corrosion resistance features of the coatings were tested by the electrochemical impedance spectroscopy (EIS) in 3 wt.% NaCl solution. The effect of PVA addition was evaluated in terms of microstructure and corrosion resistance features. CeO2/stannate multilayer films, 3 μm thick, uniform, well adherent and nearly crack free were obtained. The formation of CeO2 phase was confirmed by XRD and XPS analyses. The XPS depth profiles showed a limited diffusion of Mg towards the ceramic film. The EIS tests showed a significant improvement of corrosion resistance of the multilayer coatings (~ 16.6 kΩ after 48 h in NaCl solution) with respect to the blank alloy (~ 2.4 kΩ after 48 h in NaCl solution).  相似文献   

9.
The fretting corrosion behaviour of tin plated copper alloy contacts at 3, 10 and 20 Hz and at two different track lengths (fretting amplitude) of ± 5 and ± 25 μm is studied. The change in contact resistance as a function of fretting cycles, surface profile of the contact zone, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone were used to assess the fretting corrosion behaviour. The time to reach a threshold value of contact resistance of 0.1 Ω is found to be early for the track length of ± 5 μm compared to that of ± 25 μm, at all the three frequencies. For a given track length, this threshold value reaches early at 20 Hz. The roughness and the nature of surface profile suggest considerable amount of oxidation have occurred at the track length of ± 25 μm compared to that of ± 5 μm. The surface morphology of the fretted zone reveals severe damage of the contact zone for samples with a track length of ± 25 μm at all the three frequencies. A pictorial model is proposed to describe the evolution of change in area of the contact zone. Based on the length and width of the contact zone, the fretted area is calculated. The change is fretted area as a function fretting frequency and track length is analyzed. Delamination wear is found to be operative at both track lengths and at all three frequencies. EDX line scanning also indicates higher levels of oxidation at the track length of ± 25 μm compared to that of ± 5 μm. The variation in the atomic ratios of tin, copper and oxygen of the oxide debris present at the centre and edges of the fretted zone is plotted as an area plot as a function of experimental conditions. The debris is predominantly oxides of copper for the track length of ± 25 μm whereas they are mostly oxides of tin for the track length of ± 5 μm at all the three frequencies. The narrow and deep surface profile, lower Ra values, overlapping of the tin and copper lines in the EDX line scan and the predominance of oxides of tin support the view that the chances of accumulation of wear debris at the contact zone is very high at the track length of ± 5 μm. The study concludes that tin plated contacts could encounter an early failure even at shorter track lengths of ± 5 μm, if there is sufficient accumulation of the wear debris at the contact zone.  相似文献   

10.
络合剂对AZ31D镁合金化学镀Ni-P合金的影响   总被引:1,自引:0,他引:1  
以AZ31D镁合金为研究材料,研究了化学镀Ni-P工艺配方中络合剂对镀层的沉积速度、镀层表面形貌与结构、镀层成分及其各种性能的影响,获得了最佳工艺参数.结果表明,可以实现在AZ31D镁合金上直接化学镀Ni-P合金,并且其镀层表面光亮、均匀致密,镀层的显微硬度比AZ31D镁合金基体有明显的提高,镀层与基底的结合力良好.  相似文献   

11.
Samples of AZ91D magnesium alloy were dipped into AlCl3–NaCl molten salt at different temperatures between 250 °C and 400 °C for 28800 s. The thickness of the alloying layer is increased with the rise of the treatment temperatures. The coating was mainly composed of Al12Mg17 and Al3Mg2 intermetallic compounds. The corrosion resistance of the coating which is obtained at 300 °C for 28800 s is the best. When the treatment temperature is higher than 300 °C, some cracks developed in the alloying layers. The cracks were resulted from the thermal stress due to the different thermal expansion coefficient of the AZ91D substrate and the alloying coating during the rapid cooling process.  相似文献   

12.
An aluminum-alloyed coating was formed on an AZ91D magnesium alloy in molten salts containing AlCl3 at a lower temperature of 380 °C. The microstructure and phase constitution of the alloyed layer were investigated by optical microscopy, scanning electron microscopy, energy dispersive spectrum and X-ray diffraction. The nano-hardness of the coating was studied by nanoindentation associated with scanning probe microscopy. The corrosion resistance of the coated specimen was evaluated in a 3.5 wt.% NaCl solution by electrochemical impedance spectroscopy and cyclic potentiodynamic polarization. The results show that the aluminum-alloyed coating consists of Mg2Al3 and Mg17Al12 intermetallic layers. The formation of the coating is dictated by the negative standard free energy of the reaction: 2AlCl3 + 3 Mg = 3MgCl2 + 2Al. This process is associated with a displacement reaction mechanism and diffusion process that takes place during the molten salt treatment. High activity of Al elements in molten salts contributes to the lower temperature formation of the Al-alloyed coating. The alloyed coating markedly improves the hardness as well as the corrosion resistance of the alloy in comparison with the untreated AZ91D magnesium alloy, which is attributed to the formation of the intermetallic compounds.  相似文献   

13.
The corrosion performance of anodised magnesium and its alloys, such as commercial purity magnesium (CP-Mg) and high-purity magnesium (HP-Mg) ingots, magnesium alloy ingots of MEZ, ZE41, AM60 and AZ91D and diecast AM60 (AM60-DC) and AZ91D (AZ91D-DC) plates, was evaluated by salt spray and salt immersion testing. The corrosion resistance was in the sequential order: AZ91D ≈ AM60 ≈ MEZ ? AZ91D-DC ? AM60-DC > HP-Mg > ZE41 > CP-Mg. It was concluded the corrosion resistance of an anodised magnesium alloy was determined by the corrosion performance of the substrate alloy due to the porous coating formed on the substrate alloy acting as a simple corrosion barrier.  相似文献   

14.
Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800 °C and 120 min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44 nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480 ± 36 HV0.3) was higher than that of pure stainless steel coating (303 ± 33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.  相似文献   

15.
A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO3 · H2O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution.  相似文献   

16.
A new type of Pt + Hf-modified γ′-Ni3Al + γ-Ni-based coating has been developed in which deposition involves Pt electroplating followed by combined aluminizing and hafnizing using a pack cementation process. Cyclic oxidation testing of both Pt + Hf-modified γ′ + γ and Pt-modified β-NiAl coatings at 1150 °C (2102 °F), in air, resulted in the formation of a continuous and adherent α-Al2O3 scale; however, the latter developed unwanted surface undulations after thermal cycling. Type I (i.e. 900 °C/1652 °F) and Type II (i.e. 705 °C/1300 °F) hot corrosion behavior of the Pt + Hf-modified γ′ + γ coating were studied and compared to Pt-modified β and γ + β-CoCrAlY coatings. Both types of hot corrosion conditions were simulated by depositing Na2SO4 salt on the coated samples and then exposing the samples to a laboratory-based furnace rig. It was found that the Pt + Hf-modified γ′ + γ and Pt-modified β coatings exhibited superior Type II hot corrosion resistance compared to the γ + β-CoCrAlY coating; while the Pt + Hf-modified γ′ + γ and γ + β-CoCrAlY coatings showed improved Type I hot corrosion performance than the Pt-modified β.  相似文献   

17.
In the present investigation electroless Ni-P coatings were prepared. Structural characterizations indicated that the as-deposited coating had an amorphous structure with a P content of 23 at.%. The deformation behavior of an electrolessly amorphous Ni-P coating was investigated by using the Vickers indentation and the Tribo-indenter instrumented nano-indentation technique. The hardness of the Ni-P coating is remarkably improved after proper heat-treatment and the hardness is as high as 12.7 GPa for the coating annealed at 400 °C for 1 h. However, the cracks were observed during the indentation of the Ni-P coatings annealed at 400 °C and 500 °C for 1 h. The corresponding fracture toughness was evaluated as 2.58 MPa m0.5 and 1.33 MPa m0.5, respectively. Nanoscratching tests indicated that the wear resistance of the Ni-P coatings was improved significantly with an increasing ratio of hardness (H) to elastic modulus (E). It was observed that the friction coefficient increased from 0.083 ± 0.006 for the Ni-P coating annealed at 300 °C up to 1.337 ± 0.009 for the IF steel substrate, while the H/E simultaneously decreased from 0.084 (10.7/128) to 0.009 (1.85/200). The study revealed that the electrolessly amorphous Ni-P coating had offered better corrosion resistance than the Ni-P coatings after heat-treatment. An annealing temperature of 300 °C is preferentially suggested for the trade-off between the wear resistance property and anti-corrosion property of the Ni-P coating.  相似文献   

18.
Vanadium carbide coatings on AISI H13 steel were prepared by thermo-reactive deposition/diffusion process (TRD) in molten salt bath for 1 to 6 h at 920 °C and 1000 °C, respectively. The obtained coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction analysis (XRD). Equiaxed grains were observed throughout the coatings. The grain size gradually increased from the coating/substrate interface to the top surface. The coatings were composed of ordered state V6C5 phase and disordered state VCx (x = 0.83-0.88) phases and had a preferential orientation of (111) and (200) planes. The values of nano-indentation hardness and elastic modulus of the coating are 28.1 ± 0.7 GPa and 421 ± 14 GPa, respectively. The growth of the vanadium carbide coating by the TRD process followed a parabolic kinetics with an activation energy of 199.3 kJ/mol. The variation of the coating thickness on the AISI H13 steel with treating time and temperature can be determined.  相似文献   

19.
目的提高AZ91D镁合金的耐腐蚀性能,扩大其应用范围。方法先在AZ91D镁合金表面化学镀Ni-P镀层,再化学镀Ni-Sn-P镀层,形成Ni-P/Ni-Sn-P双镀层。研究Ni-P/Ni-Sn-P双镀层的表面形貌和耐腐蚀性能,并与Ni-P单镀层进行对比。结果 Ni-P/Ni-Sn-P双镀层表面分布更均匀平整,缺陷较少,孔隙率较低,具有无定形结构。二次Ni-Sn-P镀层的腐蚀电位约为-0.77 V,略低于一次化学镀Ni-P层(约-0.68 V),两镀层间的电位差使得其构成了微腐蚀电偶,Ni-P层作为阴极,Ni-Sn-P层作为阳极,阳极优先被腐蚀。结论 Ni-P/Ni-Sn-P双镀层的Ni-Sn-P外层能为Ni-P内层提供阴极保护,较好地横向分散腐蚀电流,从而增强AZ91D镁合金基底的耐腐蚀性能。  相似文献   

20.
A stannate chemical conversion process followed by an activation procedure was employed as the pre‐treatment process for AZ91D magnesium alloy substrate. Zn was electroplated onto the pre‐treated AZ91D magnesium alloy surface from pyrophosphate bath to improve the corrosion resistance and the solderability. The surface morphologies of conversion coating and zinc coating were examined with scanning electron microscope (SEM). The phase composition of conversion coating was investigated by X‐ray diffraction (XRD). The electrochemical corrosion behavior of the coatings in the corrosive solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the activated stannate chemical conversion coating provided a suitable interface between zinc coating and the AZ91D magnesium alloy substrate. The corrosion resistance of the AZ91D substrate was improved by the zinc coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号